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Laplacian growth with separately controlled noise and anisotropy
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Conformal mapping models are used to study the competition of noise and anisotropy in Laplacian growth.
For this purpose, a family of models is introduced with the noise level and directional anisotropy controlled
independently. Fractalization is observed in both anisotropic growth and growth with varying noise. The fractal
dimension is determined from the cluster size scaling with cluster area. For isotropic gtevitf, at both
high and low noise. For anisotropic growth with reduced noise the dimension can be as tbwlds and
apparently is not universal. Also, we study the fluctuations of particle areas and observe, in agreement with
previous studies, that exceptionally large particles may appear during growth, leading to pathologically irregu-
lar clusters. This difficulty is circumvented by using an acceptance window for particle areas.
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I. INTRODUCTION sticking rules in the multiple hits model anisotropic. This
anisotropy is essential because it is significantly amplified by
In a large class of pattern-forming systems the growth ighe growth dynamics in the low noise regime mf;,>1.
controlled by a Laplacian field. In diffusion limited aggrega- This built-in anisotropy of growth rules has been used to test
tion (DLA) this field is the probability density of aggregating the universality of DLA[13] and also to simulate dendritic
particles[1,2]. In viscous fingering it is pressuf8], and in  crystal growth[14,10].
crystal growth it can be either a diffusive or a thermal field It has been proposed that surface tension can be modeled
[4]. After the DLA model was introduced by Witten and by introducing a probabilitg <1 of freezing upon each en-
Sandei 2], it became standard to simulate the Laplacian fieldcounter with the clustef15] or by making freezing depen-
by random walkers, which after being released at the periphdent on the local neighbor configurati¢©6,9,17. In the
ery of the system diffuse toward the growing cluster andmodel[15] with t<1 each randomly walking particle freezes
freeze on it. To simulate DLA, several numerical techniquesonly after encountering the cluster'>1 times. As a result,
have been developed, of which the most powerful are thene freezing point is displaced from the point of first encoun-
off-lattice algorithmg5-7]. ter by the distancal=t~! in units of particle size. Effec-
Applications to other Laplacian problems have been protively, in this model a finite length scatkis introduced over
posed based on the random walks idea. In particular, harwhich the harmonic(Laplacian measure describing the
dling problems such as viscous fingering within this frame-probability of the first encounter is probabilistically aver-
work requires reducing the noise of individual walkers asaged. It was conjectured in Reffl6,9,17 (and partially
well as modeling the surface tension. Reduction of noise wagonfirmed by various features observed in the growth pat-
achieved by the method of multiple hit8,9], in which par-  terng that the length scald simulates the capillary radius in
ticles freeze on a particular site adjacent to the already growthe Laplacian problem with surface tension.
cluster only after this site has been visited more thag, The field of Laplacian growth, despite being well devel-
times, wheren, is an acceptance threshold. The method ofoped by now, contains several long-standing unresolved
noise reductior{8,9] was introduced in context of the on- problems. First, the lattice simulation, although extremely
lattice DLA models. More recently, this method was com-efficient algorithmically, does not seem to be a natural start-
bined with the off-lattice technique and studied theoreticallying point for analytical understanding of large scale phenom-
[10-12. In an advanced versiofiL0] of the multiple hits ena, such as fingering, fractalization, and scaling. Secondly,
method the random walkers move off lattice and stickingthe methods of simulating Laplacian growth that have been
rules are defined by using a finite numherof antennas used so far are not entirely free of problems, the most notable
attached to each particle, where, for instanoes=4 for  being an intrinsic anisotropy of growth rules. The original
square lattice DLA. Each ofn antennas has a counter that DLA rules [2] already use a square lattice and thus are an-
scores the number of timesrandom walkers arrive on it and isotropic. This anisotropy is weak and reveals itself only in
is then used to set a threshatg,, for freezing. Having a very large DLA clusterd5,7]. However, when the noise
finite number of antennas used for each particle makes thievel is reduced using multiple hits, the underlying lattice
anisotropy is amplified18,11]. The noise-reduced growth
remains vulnerable to anisotropy even when off-lattice ran-
*Email address: stepanov@iae.nsk.su dom walks are used, due to the anisotropy of the freezing
"Email address: levitov@mit.edu rules mentioned above.
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It was demonstrated recently that Laplacian growth can b&ec. VI we study the scaling properties of all introduced
studied using an entirely different approach based on iteratedarieties of the model and compare them with each other.
conformal mapg19]. The model[19] uses analytical func- We find that the fractal dimension estimated from cluster
tions chosen in such a way that upon acting on a unit circléadius scaling is less sensitive to noise than to anisotropy.
they produce bumps of prescribed size. Iterateines with ~ For isotropic growth, both with and without noise reduction,
the parameter defining the bump size chosen according tot@e dimension is very close to 1.7. For anisotropic growth,
certain rule, these maps produce a clusten gfarticles of reducing noise to the Ievel'at Wh!Ch anisotropy reveals itself
nearly equal size. The conformal model of growth has reStrongly s_hlfts the fractal dlmen5|_on to '_somewhat lower val-
cently become the subject of active wd20—25,. ues. In thIS. regime, the fractal dimension depends on sym-

The goal of this article is to extend the conformal map-Metry, and is found to be 1.62 for fourfold symmetry and 1.5
ping methodology to problems with reduced noise and©r threefold symmetry. Finally, in two Appendixes we dis-
growth anisotropy. Here one clear advantage is that th€YSS in detail the partlcle_area distribution and possible im-
growth rules using conformal mappirfig9] are intrinsically ~Provements of our numerical procedure.
isotropic Because of that one can easily avoid problems per-
tinent to other models, in which growth anisotropy and re- Il. CONFORMAL MAPPING MODEL
duced noise are intertwined. The main idea behind the noise
reduction method proposed in this work is to average th

Laplacian measure over a finite length that is larger than thﬁ1 time. In the canonical formulatiof2], growth occurs due

particle size in the original mod¢l9]. For that we alter the . e NP )
particle shape and use “flat” particles extended along theto particles diffusing from infinity one by one and freezing as

- L soon as they reach the cluster boundary. The particle concen-
cluster boundary and thin in the growth direction. To COM- —tion u(r) obeys the diffusion equation, which in the qua-
pare our method of reducing noise to other techniques, we. Y d ' q

note that the positions of the flat particles are chosen strictl;? istationary approximation of slow growth is written as

We describe a growing cluster by a sequence of domains
0CD,CD,C--- corresponding to successive growth steps

according to Laplacian measure, as in the multiple hits 0 redD, ,
method[8,9]. The control over noise is achieved by sup- 5 ) ’ "
pressing noise at length scales shorter than the particle’s V°u(r)=0 with u(r)= iln|r| It oo ey
larger dimension. This is in contrast with the multiple hits 2 ' '

method, where noise is suppressed due to statistical averag-

ing over many particle growth attempts uniformly over all The zero boundary condition on the clusi®y_, describes
length scales down to the particle size. Because of the agreezing of thenth particle upon arrival with probability 1.
pearance of this length scale our method somewhat reFhe points of the cluster bounda#P,_, where subsequent
sembles the surface tension models used in DLA lattice@dditions are made are selected randomly with probability

growth[15,16,9,17. given by the so-called harmonic measure
One notable difference from previous models is in the
dependence of the computation time on the achieved level of dP=|Vuldl, dICdD, 4, )

noise reduction. Reducing statistical fluctuations in the mul- .
tiple hits model required increasing the number of randorﬁ"’here_dI is a boundary element of the clustB_;. As the
walkers used to grow the cluster inversely with the noisedomain changes; .- —Dy—Dy.1—- -, the problem(l)
reduction parameter. In our method one can reduce nois'féas to be solved again f_or every new dom"".'.” to determine
arbitrarily without increasing computation length, simply by from Eg. (,2) the new partlclg position prqbaplllty.
varying the particle aspect ratio with particle areas kep A c0n5|derabl_e computatlonal simplification of the prqb-
fixed. We also demonstrate that growth anisotropy can bjfem can be achievefll9] by using a sequence of analytic
naturally incorporated in the conformal mapping methodunctions Fn(z), n=0,12...., to represent the domains
without affecting noise reduction. Dn. The functionsF,, are chosen so.that each of .the-m de-
Our plan in this article is as follows. We start by revisiting finés @ conformal one-to-one mapping of the unit disk
the conformal mapping model. We discuss some issues ig= 1 On the domairD,, including the boundary. Adding a
nored before and propose a generalization to problems witi€W object to the cluster at theh growth step is described
reduced noise and anisotropy. In Sec. Il we review the?y changing the mapping, as follows:
model, focusing on aspects that will be important in the rest
of the article. In Sec. Ill we study the distribution of particle Fa(2)=Fn-1(f\,4,(2). Fo(2)=2. )
areas produced by the growth rules employed in REJ). ] o
We observe that these rules lead to the occasional appedrére the functiorfy , (z) maps the unit circlgz|=1 onto
ance of very large particles. To fix this problem, we evaluatea unit circle with a bump centered around the paiate'‘n
particle areas at each growth step and apply an acceptanoéthe circle. The bump size is determined by the parameter
criterion for newly grown particles according to their area. In\, as discussed below. The andlg is chosen randomly at
Sec. IV we describe a model with reduced noise. To suppressach growth step.
noise we use particles that are thin in the growth direction The key simplification that arises in the conformal map-
and smooth at the corners. In Sec. V we show how thesping representatio3) is due to the fact that the harmonic
growth rules can be generalized for anisotropic growth. Inmeasure?) is translated into a uniform probability distribu-
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circle onto a circle, the mappind, , produces a crescent-

/ “‘ shaped particle with circular boundaigee Fig. 1. Second, a
//// simple calculation shows that the particle curvature radius
equals\. The latter has the following consequence. Consider

growth starting from a circular cluster of radiusdescribed
by the mappind-(z) =rz. The mappind-(f, 4(z)) then pro-

Y I h,\ duces a particle of curvature radius equal\ta After the
value of A is chosen according to the rul@), N\=\q/F’

% / i =N\o/r, the particle radiu; becomes equal )tg, indepen—_

eifg1 1/h (1 dently of the cluster radius. The area of this particle is

readily evaluated:

a(Ng,r)=a, +\or — (r>=A3)tan (Ao /r),

FIG. 1. The sequence of mappings constitutig,(z) defined 2
by Egs.(4) and (5). a, = mhgl2. (8)

tion for 6,,, so thatd P(6)=dé/2x. Also, there is no statis- The areaa(Xo,r) varies bgtweera* for hg<<r a”?‘ 2, for
tical correlation between subsequets. No>r. For a generic noncircular cluster the particle area can-

The form of the functiorf, ,(z) growing the bumps can not be found analytically. Statistics of the areas will be dis-

be chosen according to computational ne€ts]. In this cusged -in Sec. lll. We will see that the typical area of a
article we use particle is of the order oé, .

The overall size of the clust&p,, grown according to Egs.
f, (2)=€’g~1(F,(g(e”%2))), (4) (3) and (7) is well characterized19] by the mappingF,
’ stretching factor at large scales:
where the functiorg(z)=(z—1)/(z+1) maps the unit disk
|z|=<1 onto the left half-plane Re<0, and the function

T, (2)=h,(2)/h, (1), hy(2)=z+ZZ+\?, (5)

grows a semicircle of radiud, as shown in Fig. 1. The

function f, (z) is defined in Eq(5) so thatf,(1)=1. This

ensures that the mappirtd) mapsz=<« onto itself. n n
Ideally, the valued., defining particle size should be cho- R.=[1 [f; ,(z=1)]1= 11 (1+23)Y2 (10

sen so that all particle areas are equal. In the conformal map- k=1 kK k=1

ping model[19] this is approximately realized via predicting

the bump size to be obtained at thth step using the Jaco- The reason foR, to be an accurate measure of the cluster

bian of the already grown cluster mappikg_. D, radius lies in the properties of so-called univalent func-
The argument is as follows. The area of the semicirculations[19,21]. o

bump grown using, (2) is m\;[1+O(\7)1/8. The area of At largen the cluster radiu®, is expected to grow as®,

. . where« is a numerical constant. This is consistent with Eq.
the cor.respondlng bzum';’ produced EV(Z.)’ at small)\r.,, IS (10) provided that\2n—2a at largen [19,26. The growth
Iipproxmlatelyialn_1|h7r)\n/2_, .wherfeJr:‘;hl kl)s the.Jacob|an of problem(1),(2) is believed to give rise to fractal objects with

n-1 €valuated at the position of t ump: fractal dimensiord<2. There are several conventional defi-
I 1=F!_,(z=elt) 6) nitions of the fractal dimension of a growing clusféi. In
nmi el ' this article we employ scaling of the cluster size with its area.

Hence, to compensate for stretching due to the Jacobiaflso, one can use box counting, or the relation between av-

Ry=F/(z—%)= Hf 0 (2=). 9

The cluster radiu®}, can be conveniently evaluated using
Eq. (9) together with the propertg(«)=1 as follows:

J,_1, one has to choose the values)gf as follows: erage growth velocity in a strip and the strip width.
TakingR,, defined in Eq(9) as a cluster radius provides a
)\n=|\]n_l|*1)\0, (7) numerically efficient method for calculating fractal dimen-

] ) . _sion. For that one looks for a scaling relation of the form
where the parameter, defines particle size. For growth in-

volving particles of very small size the ru(@) would have RnocA#/d, (12)

been sufficient to ensure identical areas of all bumps. For our

problem, in which the bump sizes are small but finite, thewhereA, is the total area of the clusté?,. The dimension

areas are only approximately equal. However, one can den js related to the parameter describing scaling ok, as

onstrate that, after certain improvements discussed in Seg= 41 which is true provided\,n. In our S|mulat|on we

lll, the rule (7) produces bumps with sufficiently close areas.make sure that individual particle areas have a sufficiently
The form (4),(5) of the mappingf has several nice fea- narrow distribution(see Sec. 1), and thus the total cluster

tures. First, since the fractional linear functigfz) maps a area is indeed proportional to the particle number.
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FIG. 2. Cluster ofN=400 particles arown using the model FIG. 3. (a) Solid line: total cluster ared,, dynamics for the
3.7 Witﬁ N io 5 andf_ of tEe florm (4?) (g’)" Tﬂe' b%undar of growth of the cluster in Fig. 2,\|f400, )\0:0..2. Do'Fted Iinei the
' Lo A6 N ) y areaA,, versusn for growth in which only particles with area inside
each partl_cle is displayed. Note large particles which appear rare%e window[0,3a, | are accepted, other growth parameters are the
and seal fjords. same.(b) The same area dynamics as(a with a linear function
subtractedA,—2.1a,n versusn.
Scaling properties of the growth problem described above

have been explored by several grofii§—25. It was con- il pe used to tune noise, we employ a different method for
cluded that the properties of growth resulting from the CoN<gliminating large particles, as described below.
formal mapping model match those of the lattice DLA mod- T4 study the role of exceptional particles, we calculate the

els. Below we revisit the relation between the problempariicle areas generated by the growth mo(®)(7). The
(1),(2) and the conformal mapping mod@),(4),(7) and dis-  method employed to evaluate particle areas is the following.

cuss several interesting extensions of this model. For the particle grown at stap we start with few points on
the unit circle|z| =1 which are mapped bly,, on the particle
IIl. AREA DISTRIBUTION boundary. Subsequently, we add new points on the circle

|zZl=1 between the old points, and compute distances be-

In the earlier wor 19] it was assumed that the rul@) is tween images of neighboring points undgr mappings
sufficient to produce particles with nearly equal areas. This
assumption was apparently consistent with the cluster images ff o of E —f.ofo...of (12)
in which each particle is represented by one or few points. neoonmlm o2 n
To investigate this issue more closely, in this work we have . )
chosen a different method of representing particles, in whichvherefy is a shorthand notation fd, 4, ande stands for
the exact boundary of each particle is shown. An example othe mapping composition. We keep adding new points until
a cluster with the boundaries of all individual particles dis-the distances between the images of all neighbors will not
played(see Fig. 2 demonstrates that the areas of almost allexceedy\, wherey<1 is a numerical factor. We used the
of the particles are indeed quite close. However, there argbove procedure withy=0.05, which produces about 200—
also a number of exceptional particles of large area. 400 points per particle.

Large particles tend to appear within fjords and seal the This method enables one to have an accurate graphical
space between well developed branches. Typically, this hapepresentation of each particle, as demonstrated in Fig. 2,
pens when particle growth is attempted on the periphery oéind also to evaluate particle areas with an accuracy on the
an actively growing region. Insufficiency of the rul@é for  level of 0.1%. This is illustrated in Fig.(8 showing how
keeping particle areas small is caused by fluctuations of ththe cluster total ared,, is changing during the growth of the
JacobiarfF/(z) over the unit circléz]=1. These fluctuations cluster displayed in Fig. 2. The arég grows as a function
can be large in magnitude and also very abrupt, happeningf n in small steps of ordem, =mw\3/2, alternating with
on a scale of the order of, within the circle arc mapped occasional jumps of a much larger magnitude. The jumps
onto the particle boundary. In the case when a newly growrcorrespond to the appearance of large particles which seal
particle overlaps with such a fluctuation, it can be “artifi- inner cluster regions. The decomposition of the growtiof
cially stretched” under the mapping. into the smooth and singular parts is revealed more clearly in

The appearance of large particles was reported in Refig. 3b) showing the dependence &, versusn for the
[21] and a method for eliminating them was proposed, basedame growth as in Fig.(8), with a linear function 2.4, n
on choosing an optimal shape of particles produced by theubtracted.
mappingf, 4(z). It was argued21] that the best value of the A histogram of the individual particle areas,=A,
parameter &a<1 in the mapping defined in Refl9] is —A,_; is plotted in Fig. 4a). The area distribution was
given bya=2/3. This value provides a compromise betweenobtained by averaging over 10 realizations of the first 1000
abundance of large particles at-0 and a needlelike par- growth steps with the parametarp=0.2 (the same as in
ticle shape aa—1. Since in this article the particle shape Figs. 2 and R The area distributiofP(a,,) is sharply peaked
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FIG. 6. Cluster grown with the particle area acceptance window

FIG. 4. (a) Probability distribution function of particle areas >
[0,3a,] [see Fig. 4b)], N=17545,\,=0.8.

normalized bya, = m\3/2~0.063 [see Eq.(8)]. Statistics were
taken over 10 independent runs of the growth witkr 1000, A,
=0.2. Note the peak at2.1a, and the tail corresponding to ex-
ceptionally large particles. The largest area observed~a88.8a,

(see Fig. 2 Small peak marked by arrow is due to the primary AL . ;
particles growing directly on the unit circlép) Same as ina) for Let us remark that the tail in Fig. 5 at its far end is appar-

growth in which only particles with areas in the windg@,3a,]  €Ntly somewhat steeper than *. We believe that this de-
are accepted. viation from thea™# behavior is due to the finite number
N= 2000 of time steps in the growth samples used to obtain
about 2.5, and has a number of other interesting propertiesp(a)' In a finite cluster there is an upper cutoff on possible
that will.b; discussed in Appendix A particle areas. This makes the far tail7®fa) nonstationary,
4(a) that corresponds to the exceptionally large particles is articlesy\’/vith areas in the tail oP(a) Tph?s is desirableg
the tail stretching far to the right from the main peak. NoteE houah the tail i : .h' dl o
that only the beginning of the tail is displayed in Figay ecause, even though the tail is quite thin and large particles

; - S 27 are rare, extremely large particles appearing occasionally
_be_cal_Jse_ Fhe weight of the tail in the probat_nllty d|st_r|but|on may affect macroscopic characteristics of the growth. In par-
is insignificant, and so the values Bfa,) far in the tail are

- ticular, the relatively slow power law decrease in the tail,
too small to be visible on the scale of the peak. — f h i f the cl :
To display the tail we replot the distributioR(a) on a P(a)ea *, may affect the scaling of the cluster SIFG,
loa-log scale. as shown in Fia. 5. The right tail Bfa) is and/or the numerical accuracy of the scaling exponent. To
gW ?Iik 7?’ o *“WwitL '5’25 Sin 9 >2' tﬁt )firl ¢ eliminate the growth of large particles, we choose an accep-
pmoorﬁentea,x —(?aPaa dais f.ﬁ.;; (and th ceg ) Ie-|o S tance threshold,,.,=3a, to truncate the tail of the distri-
.< >_<3 t(h) : Idl i :;5 >._ é‘.)' Wt bution in Fig. 4a). Then, for each growth step, we calculate
Ever, sinceu= s, the second momen (a) is divergent. the new particle area,,. The particle is accepted only if
The existence of the mean particle arg@ means that

. e a,<a,ax Otherwise the particle is discarded and a new at-
{An)en. However, the absence of variance implies that theLempt at particle growth is made. An example of the cluster

grown according to these rules is displayed in Fig. 6.

One can see immediately that the overall structure of the
branches in Fig. 6 is much more regular than that in Fig. 2.
The distribution of areas for such a growth is shown in Fig.
4(b). Within the acceptance windofd,a,,,,] the distribution
‘P(a) repeats in all details the distribution shown in Figa)4
for the growth with all particle areas accepted.

For growth with large particles eliminated, the arda
increases as a linear function of the step number. The aver-
age increment o\, is given by the mean value @, taken
from the distribution shown in Fig.(®). To verify this, we
plot A, versusn in Fig. 3 for the same growth parameters as
those used in Fig. 2, where only the areas up & are
: accepted. Note a small difference between the slope of the

Ina/a. dependence at<50 and at largen that appears because of
relatively smaller size of the primary particles growing di-

FIG. 5. Logarithm of the probability distribution function of rectly on the unit circle.
particle area IrP(a/a, ). Calculated from 83 realizations witN The growth model augmented with the area acceptance
=2000,\,=0.8. criterion has a new parametay,,,/a, . In principle, choos-

fluctuations ofA,, about the mean value are non-Gaussian
and larger than required by the central limit theorem. Both
features are clear in the samp@le dependence in Fig. 3.
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ing different values ofa,,, gives rise to different growth // . Z i //
patterns. However, as long as the windpva, 4,/ contains hx hx
much of theP(a) peak area, we do not observe any qualita- o AT
tive change in the growth. —iA —i)
Scaling properties of the growth can be studied in several
ways. Previous studies of scalif§9,21-24 are based on _
the relationR,,<n%, whereR,, was obtained for the growth Prup
with unrestricted areas. However, it would be more in the
spirit of the notion of a fractal to use the relati¢hl) be- , )
tween cluster size and its area. This clearly would not work 7 ///
well with large particles present, because statistical fluctua- w
tions of the cluster ared,, are quite large in this case. On the
other hand, for the growth with restricted areas used in this
work, the fluctuations oA, are reduced to a level consistent
with the central limit theorem, and thus one can employ the FIG. 7. The sequence of mappings Constituﬁ%(z) as de-
relation(11) to study scaling. fined by Eq.(13); p=1.5.
Of course, it is not clean priori whether growth with

area cutoff is equivalent macroscopically to growth with Un-opow how by changing the functiohy(2), defined by Eq

restricted areas. Qn general grounds,_ one may expect ﬂﬂ%), one can create “flat” particles that are wide along the
growth to be significantly altered by eliminating large Pa™interface and thin in the growth direction. The reason that

t'CIe.S' \i\r/]h%ther th'j IS m:je canfbe |nd\|l\r,(t=,\r§:tly_tthested bty_ Ctog]'noise is suppressed on using flat particles is the following. In
paring ek, vs h dependence 1or gro WITh unrestricted g growth, a particular displacement of the growing cluster

areas with the fractal dimension obtained from the relatiorboundary amounts to a larger number of layers than in the
(112) for growth with area cutoff. We note in that regard that case of rounded particles used in REE9]. Then, due to

the scaling exponend=1.7 found below(see Sec. VI giaistical averaging over many particle layers the boundar
matches exactly the value found in Rgf9]. However, al- g ging y P y y

houah th b y icl isplacement becomes less erratic, and so the noise is re-
though the presence or absence of large particles seems 10 ggee . Quantitatively, the noise suppression factor can be

irrelevant for the cluster size scaling, other growth characteréstimated as the square root of the particle aspect ratio.

istics, such as the structure of branches and fjords, are likely - il b duced b difviF fol
to be more sensitive to the method of treating large particles,. _at particles can be produced by modifyifigz) as fol-

We postpone discussion of various details and features
the area distributiorP(a) to Appendix A. In the remaining

part of the article we use the conformal mapping model aug- ~ R } _
mented with the area acceptance criterion to study several fx'p(z)_Wh)\p phkp(hk(z)) ' )‘P_p+ 1/p’ (13
interesting Laplacian growth problems.
41 -t
IV. NOISE-REDUCED LAPLACIAN GROWTH W:{hxpl<5h>\p(h>\(1))” , p=1. (14

Roughness of the growing cluster is mainly due to two
factors: shot noise and the Mullins-Sekerka instab{ly]. ~ The functionh, (z) is defined in Eq(5), and its inverse has
The shot noise results from the randomness of the aggregahe formh, *(z) = %(z—\?%/z). The factoW s introduced in
ing particles’ positions, and so it contributes to the fluctua-q.qer 1o havéf, ,(1)=1, as for the functiorf,(z) defined
tions equally on all spatial scales down to the particle sizeby Eq. (5) ab&?ve. The resulting functior(4) satisfies
The Mullins-Sekerka instability is due to aggregation ratef)\ ,(2) =2, which ensures the properBy,() == for all n.

enhancement near the tips, which leads to incremental™ o mapping produced by the functiobd is illustrated
growth of perturbations of a smooth front. The wave-number Fig. 7. Note that, because bf (i\)/p=i\,, the square
. . ’ p p?

dependence of the growth rate for a harmonic modulation oltn ) . ’
an interface moving with average velocityis given byy, oot singularities inf, , atz=*i\ are absent for alp>1.
=v|k|. The lineark dependence ofy implies that the insta- Instead, the mapping compositiéb3) produces weaker sin-
bility develops first on the smallest scale, in our problemgularities of the form £=ix)%2 This smooths the corners of
given by the particle size. the particles, as shown in Fig. 7. _

To study the ultraviolet cutoff role, i.e., the effect of short ~ Qualitatively, under variation op the particle shape
distances on the noise and the instability, it is of interest teevolves as follows. Atp=1 the mappingf, , form (13
introduce a parameter in the problem that allows one to shifcoincides with Eq(5). Increasingp produces patrticles with
the value of the cutoff scale to values larger than the particlgrowing aspect ratio, as can be seen from comparing the
size. One expects that upon doing so both the noise and trenlarged parts of Figs. 10, 11, and 8 below.
instability growth rate will be reduced. To illustrate the effect op on the particle shape, consider

In the mapping model, the noise level can be controlledhe mapping functio13) in the limit p>1. First, one can
by altering the shape of aggregating particles. Below weaewrite Eq.(13) as
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Wl
. . . AN ESaaaay
whereC=[2h,(1)—1]/h%(1) andh, is defined in Eq(5). g%@»%ﬁ%
The boundary of the particle produced fhy,(z) of the form Ts?w)}@m\‘:{}w%

(16), to lowest order in 1, is
FIG. 8. Cluster grown withp=3, \y=0.2. The number of
growth stepdN=15043.

2

x=——(\?=-y*%, (17)

Ap The appearance of the cluster in Fig. 8 shows that using
. . . . flat particles indeed helps to reduce statistical fluctuations. In
— 2 2
where Xty =2z The area of this particle is B\°/4p".  y,is"model, effective averaging of the harmonic measure is
Mapped byg ", according to Eq(4), the area is multiplied g6 {5 the presence of a tangential-to-boundary length scale
by a factor equal to 4 at<1. set by the particles’ larger dimension. This length scale is

One can use the growth mapping mod®,(7) with the ., rolied by the parametgrand becomes large at>1, if

function (13) to grow clusters in much the same way as was, . . . . . .
: ; . . measured in units of the particle smﬁ . Noise reduction
done for the model witlp=1 in Sec. lll. The first step is to b *

tudv th ticl distribution f th with takes place due to the absence of fluctuations with wave-

Stu. tyd € par I‘?he gfef.b 'ff ¥ IU|okn or .?ro;/v thV\{l' I;J.nreA: length smaller than the particles’ larger dimension, resulting
stricted areas. The cistribution J00ks simiiar to that In Fg. ., 5 gpift of the shot noise spectrum cutoff wave number
containing a central peak and tails corresponding to ver

. . . ¥rom 2w/\a, to lower values as the parametpris in-
large and very small particles. In this case the peak is some- .

. _ . creased. Because of reduced noise, as compared tp the
what wider than for thgp=1 case. However, much of its

weight in the distributioriP(a) is still contained in the win- =1 case, more aggregation events of flat particles are needed

dow [0,3a, ]. Here the “standard areaa, is defined, by to reach a given radius of the cluster.

analogy with Eq/(8), as the area of a particle grown over a Averaging over a tangential length scale is somewhat
9y =q.9), pa g similar to that used in the on-lattice DLA models to simulate
perfectly flat interface[For p#1 there is no closed form

4 . ) surface tensiofil5,16,9,17. In these works freezing of ran-
expression for the particle area, like Ef), and so one has dom walkers upon each encounter with the cluster was de-
to calculatea, numerically]

As before, at each growth step we choagerandomly, scribed by a finite probability<<1 which could be a function

! of occupancy of the sites around the freezing point. Since
0=<6,<2mw, and calculate the parametky, using Eq.(7), . . : _
i.e., based on the particle area predicted from the Jacobi freezing of each particle typically takes place after atiodt

3 Then we evaluate the actual amaof the particle. To <_:ounters with the cluster, &1 these_ models are c_harac-
ir;]r;igit the appearance of large particles, we use thé acce terized by a large length scale over which the Laplacian mea-

. o Rure is probabilistically averaged. Similarly, the flat particles
tance window{ 0,33, ]. If a,>3a, , the particle is not ac- | \«oq'in our model can be thought of as the result of averag-
cepted and a new growth attempt is made.

An example of growth withp—3 and Ay=0.2 is dis- ing over possible particle positions within a finite length

i . . 8 scale taken over the harmonic measure. Moreover, there is a
played in Fig. 8. In the inset we zoom in on the details of one

fi Note that individual particl indeed quite flat light dependence of particle size on growth position: the
Inger. Note that individual particies are indeed quite tia andps)articles appearing near the tips are somewhat smaller than

are evenly spread over the cluster boundary, indicating rét
duced noise. The growing interface is overall very smooth
without sharp tips or corners. Also, the fingers are muc
thicker than for thep=1 growth (see Fig. 6.

The cluster siz&R, is defined by Eq(9). As in Sec. Ill,
the terms in the produd®) can be evaluated using the rela-

ose appearing in the concave regidsse Fig. 8 This
correlation is consistent with the surface tension interpreta-
ion.

The crucial difference, however, is that particle positions
in our model are chosen according to the unaltered harmonic
measure, whereas in the surface tension models particle

tion f3  4(*)=1/f} (1), where freezing depends on local boundary geometry. From that
point of view our model is more similar to the multiple hits
~ hy(1)/ 1+ 22 h2 (hy(1))+ pz)\g models[8,9] in which statistical averaging of the harmonic
f;yp(l)z > > 2" L (18) measure over particle growth attempts is used to control
Vhi(1)+25 h)\p(hx(l))_p Ap noise. In these models noise reduction is achieved by aver-

aging over independent random walkers with a threshold on
In the following Sec. VI we use Eq18) along with Eq.(9)  the minimal number of visits of each site required before
to evaluate the cluster radilg, and study its scaling. freezing at this site. Since independent walkers arrive at very
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distant points of the cluster boundary, this averaging is not
characterized by an additional large length scale and thus
bears no resemblance to surface tension.

The models using finite freezing probability<1 have
been shown to give rise to clusters with thick branches. The
Laplacian character of the dynamics and the analogy of the
averaging length scale with the capillary radius has been
pointed out[15] and a relation with the Saffman-Taylor
problem with surface tension has been conjectliigd Be-
cause of the large length scale appearing in our averaging d
scheme, here a similar relation to the problems with surface
tension can be conjectured. Indeed, the growth displayed in
Fig. 8 looks like a typical fingering pattern observed in the
Saffman-Taonr problem_ with surface t_ension. AS a word of FIG. 9. Anisotropic growth withV =3 obtained using the win-
caution, one should realize that all available evidence for th%l

ival b h bl ith ¢ . ow (20) for the growth direction with co8,,,,=0.9. Other param-
equivalence between the problem with surface tension ang. s ysedn=10 146,1,=0.8, p=15.

our largep growth, however similar they appear to be, is
rather indirect. The issue of whether or not this growth.

model is indeed characterized by an effective surface tensio'ﬁOtrlzpy by making )‘”_ a funcuon of ©n, €g. Ay
and how the latter compares to the noise will be discussed (" (Vn). Another way is to introduce an acceptance prob-
elsewhere. ability for the particles that depends &, in some way. In

the simulations reported below we use an acceptance win-
dow for M®, with M=3/4, ..., corresponding to growth

V. ANISOTROPIC GROWTH MODEL with M-fold symmetry. Only particles witl®,, such that

The iterated mapping modés),(7) can be generalized to
describe spatial anisotropy of the local growth rate. Such = Omax= MO =< Oy (20
anisotropy is characteristic of crystal growth, in which all
particles arriving at the crystal-liquid interface have to ac-are accepted. Heré,,, is a parameter in the intervg0, ]
commodate to the anisotropic crystal structi#é controlling the degree of anisotropy. Small valueségf,,
Anisotropic growth often gives rise to anisotropic irregu- < correspond to highly anisotropic growth, whereas fully
lar fingering patterns called dendritgk6,14,18,10 The dy- isotropic growth is recovered in the limét, — .
namics of dendrite growth obeys scaling laws similar to that Other aspects of the simulation are the same as in Sec. IV.

of isotropic Laplacian growth7,28|. One of the outstanding \we employed the elementary mappﬁ]gp(z) of the form
theoretical questions is how the scaling exponents depend qA3) with the noise level controlled by the parameper 1.
the anisotropy. Particles with large areas were eliminated using the accep-

In this problem, the cluster grows due to spatially isotro-tance window[0,3a, ] defined in Sec. IV. An example of
pic diffusion and aggregation of particles. Thus the quasistagrowth with threefold symmetryM = 3) is shown in Fig. 9.
tionary probability distribution still obeys Ed1). The dif- |5 this case, we uUsed\,=0.8, p=1.5 and 6.
ference from the isotropic model is that the cluster change- 5 %(0.9)~0.451. The cluster is characterized by overall
due to particle freezing at the boundary depends on the |°C%lymmetric main branches covered with numerous side-
growth directionv, |v|=1. (The unit vectorv is normal t0  pranches.
the boundary. Accordingly, the probability of joining the |y our model one has separate control over the degree of
cluster becomes a function of and Eq.(2) is replaced by apisotropy and over noise, via the parametégs, and p.

This is convenient for studying the effects of noise on the

dP=Q(v) |Vuldl, dICD, 4, (19 ordering of branches in dendrites. To illustrate that, we com-
] ] . pare two growths with fourfold symmetry, displayed in Figs.
where the functiod)(v) describes anisotropy. 10 and 11. The cluster in Fig. 10 is obtained using phe

In order to include anisotropy in the mapping model =1 model without noise reduction, as described in Secs. Il
(3),(7), at thenth growth step one has to be able to predictang |11. The cluster in Fig. 11 is grown using the noise re-
the local growth directionv,, from particle positions de- duced model of Sec. IV with the parameter 2. In both
scribed by randomly chosen anglég, k=1,2,...n—1. cases, we use the same anisotropy parametgf;,
This is possible because the complex-valued Jacobian of acos }(0.95)~0.318. One notes high anisotropy of the
conformal mapping keeps track of the angle change undejrowth present at small scales in both cases, which is signifi-
the mapping. Specifically, conside®,=6,+argJ,_1,  cantly suppressed at larger scales for the noisy growth with
whereJ, _, is given by Eq(6). Then®, defines anormalto p—1 (see Fig. 10 However, thep=2 growth with low
the cluster boundaryy,=cos0®,x+sin®,y, at the growth noise remains very anisotropic at all scalsse Fig. 11
point F,_,(e'%). It is known from studies of on-lattice DLA models that

Now, there are several possible ways to account for th@oise, no matter how strong, gives way to anisotropy at suf-
growth anisotropy. For instance, one can introduce the arficiently large scalef5,6,18,11. We thus expect that a simi-
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FIG. 10. Anisotropic growth withtM =4, cosf,,=0.95, and
high noise;p=1, N=7635,\,=0.3.

lar effect may take place in the noisy growth with=1,
making the growth shown in Fig. 10 at larger scales look like
that in Fig. 11.

In agreement with the studies of off-lattice DLA models
[14], we observed that dendritic growth with the symmetry
of order M =3,4 is much more stable with respect to noise
than that withM =5,6 or higher. The scaling properties of
anisotropic growth will be studied in Sec. VI.

VI. SCALING PROPERTIES

Scaling ofR, for all growth models introduced above is lnSA/(a)
studied here using the following procedure. The cluster ra-
dius R, obtained from Eqs(9), (10), and (18) is plotted FIG. 12. Log-log plots oR?/{a) (a) andR/A? (b) vs normal-
against the cluster ared,, evaluated as the sum of indi- ized areaA/(a) for several clusters described in the text. Hgre
vidual particle areas,,. Asymptotically, at largen, one has =1.7, y=1/1.7=1/8, and(a) is the particle area averaged over the
RnocAﬁ/d_ To determined more accurately we optimize ini- clus.ter. The plotga) and (b) are connected by an affine transfor-
tial conditions of the growth, represented in our model by themation.
nondimensionalized particle siag), as described below.

In the log-log plot ofR,, versusA,, one can clearly distin-  growth, with or without noise suppression, the cluster ini-
guish two regimes, initial growth and developedregular tjally consists of branches growing essentially independently.
growth, characterized by somewhat different slopes of the ater, at the regular growth stage, the number of main
corresponding parts of the Rivs InA curves. The geometri- pranches is reduced to four or five, all interacting and com-
cal meaning of these regimes is as follows. For isotropigeting with each other. For anisotropic growth withfold
symmetry the number of main branchedMsat all stages of
growth. Regular growth in this case is distinguished by many
fingers appearing on the sidesMfmain branches.

The initial stage is more pronounced when the particle
size, determined by the value ®f, is much smaller than the
unit circle from which the growth starts. Since we are inter-
ested in regular growth scaling, in each case studied we tried
to optimize the value of\, to shorten the initial growth
stage, carefully checking that the variationN\af has no de-
tectable effect on the asymptotic slope of theRlns InA

S
i

=

/

)

)

,wﬁ@z@w curve. The benefit of shortening the initial growth stage is
)))Lg'}j:” that, at a constant number of particles, it leads to longer

regular growth and thus allows one to extract the scaling
exponent with higher precision. The resulting curves are pre-
sented in Fig. 12, as described in the figure caption and be-

low.
FIG. 11. Anisotropic growth withtM =4, cosf,,=0.95, and The optimal value of\y determined for the isotropic
low noise:p=2, N=6782,\,=0.8. growth withp=1 is close to\y=0.8. For the scaling analy-
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sis we used the growth displayed in Fig. 6, in whiksh 3
=17545,\y=0.8, andp=1. In Fig. 12, it corresponds to InR
the lowest of the curves, marked lay. To eliminate the

effect of fluctuations at the initial stage of the growth, we 250
also generated the curves, as, anda,, by averaging IR
over 5, 10, and 50 growth realizations with=5000, 1000,
and 200 time steps, respectively.

For isotropic growth with reduced noise we analyzed two
growths with p=3: curve b; with N=11611, \=0.1;
curve b, with N=15043, A;=0.2. The curveb, corre-
sponds to the growth displayed in Fig. 8. At low noise, the 15}
fluctuations ofR,, are quite small, which makes additional
averaging over realizations unnecessary. : : :

Note that for the isotropic growth models the strategy of InA
optimizing Ao works quite well, allowing one to almost en- k.13, Clouds of points (IR.In A) corresponding to 1000 re-
tirely eliminate the initial growth region. The scaling dimen- jizations forN=25, 50, 100, and 200,=0.8, p=1.
sion found from the slope of the best straight line fits is close
to 1.7. To study the deviation from 1.7, we subtract from alldistribution with the variance:n. (As we argue below, there
curves the linear function IR=In A/1.7 and plot the result in exist long negative correlations of particle areas, which may
the lower part of Fig. 12. Note that upon this subtraction thefurther reduce fluctuations @&,,.) The fluctuations of I,
curves for isotropic growth, with or without noise suppres-are simply given by relative fluctuation8A,/A,, which
sion, become nearly perfectly horizontal. Estimate of the demeans that for larga the distribution of ImA, is also Gauss-
viation from the best horizontal line fit shows that the valueian, with the variance proportional o .

1.7 is accurate within 1%. On the other hand, the radilg, is a product (9) of

For anisotropic models, we consider three differentstretching factors){")=f|(z—=). SinceJ{”)>1 for all k,
growths: curvec, with N=10146,0,=0.8,p=1.5,M=3;  the quantityR, grows monotonically, so thaR,=A at
curve ¢, with N=7635, \y=0.3, p=1, M=4; curvec;  |arge n. Thus the noise due to fluctuations &f" is of a
with N=6782,\y=0.8, p=2, M=4. These curves corre- multiplicative nature. One can write
spond to the growths displayed in Figs. 9, 10, and 11, respec-
tively. As above, we subtract the linear functionRn n
=In A/1.7. However, after this subtraction, the curegsand INR,= >, Infy(z—), (21)

C; retain some residual slope. Estimating it, we conclude that K=t

the best value for the fractal dimensiordis- 1.5 for curvec,
andd~1.62 for curvecs. The latter value agrees with the
valuesd~1.58 andd~1.63 for growth withM =4 reported

which suggests that the distribution offp is Gaussian, i.e.,

the distribution ofR, is log-normal. Indeed, the log-normal

. fit perfectly describes the statisticsRf;, as demonstrated in

in Refs.[28,7]. , , _ _ Fig. 14. However, attempting a Gaussian fit produces an
For the curvec, corresponding to anisotropic growth with asymmetric distribution deviating from the observed distri-

noise, after subtracting R=InA/1.7, we do not find any , 4ion of INR . Thus, even though the relative fluctuations of

s!gn|f|c§1nt residual slope. It is possible, however, Fhat thqén are small, the statistics is best described as log-normal.
dimension 1.7 corresponds to the crossover regime an

changes to a lower value at larght Similar behavior is

known to take place in on-lattice DLA grow{lf], where the InP
dimension 1.7 observed for not very large clusters crosses 2r
over to 1.63 aN~4x 10°.

To understand possible sources of errors in determining
the fractal dimension from IR vs InA curves, here we con-
sider howR,, and A,, fluctuate withn. The fluctuations of
In R, gradually decrease with increasingas can be clearly
seen in Fig. 1th). A convenient way to analyze fluctuations
is to plot pairs (IMRy,InAy) for particular N, repeating 24
growth many times. In Fig. 13 we present results fof 10
growth samples and several valued\ofThe resulting clouds
become more compact ds increases, indicating that the

fluctuations of IRy and InA are decreasing. 43 2.4 26 2.8 R
Let us first discuss fluctuations of & . The total ared, n
is the sum of individual particle areas,, k=1,2,...n. FIG. 14. Probability distribution of IR for N=100 andN

Assuming that the areas, are independent or, more pre- =200 calculated from 10 368 and 2862 growth realizations, respec-
cisely, have only short correlations, one obtains a Gaussiatively; A,=0.8, p=1.
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Naively, Eq.(21) implies growth of the variance of R, APPENDIX A: DETAILS OF THE PARTICLE
with increasingn. However, Figs. 13 and 14 demonstrate AREA DISTRIBUTION

that, on the contrary, the width of the Ry distribution is Here we discuss in more detail the distribution of particle

decreasing with increasing This nontrivial behavior was areas. The main feature manifest in the area histogram plot-

first mentioned, without explanation, in R¢21]. N ; ) _
To rationalize the observed sharpening of the distributior;[eOI in Fig. 4 is a sharp asymmetric peak-a2.1a, . This

of R,, one can argue as follows. We note that the dynamiC%CJ)?(?\;J:(’LSO::]St origin in the dependence of particle size on the
of R, is characterized by a negative feedba(_:k. Conside The argument is as follows. First we note that the growth
growth of a cluster that at theth step has a radius smaller

. . . is taking place predominantly at the tips of the branches.
than average. Then the ‘_]acoblanFq,f IS typlcally sma_ller Because of that, for several particles growing on each other,
than its mean value at this number of particles. In this cas

ding to Eq.(7) b " : el i Shere is a tendency to preserve growth direction. This leads
according 0, q.L7), subsequently growing particles Will , g5 mation of relatively long chains of particles growing in
have larger\,’s, and thus larger areas, until the cluster ra-

) ) a particular direction, clearly seen in the inset of Fig. 6. The
dius approaches the average value. The evolution of a CIUSt‘Ehains are mostly formed at the tips of outer branches.

that at a certain step has a radius larger than average can bengy, consider a particle growing near one of the tips. The
considered in a similar way. .ThIS long time anticorrelation of 3o of this particle has some dependence on the position of
Ai’s suppresses the fluctuationsif. It also produces long the growth point relative to the tip. The peak in the histo-
negative correlations of particle areas. gram in Fig. 4 is explained if one assumes that the particle
area has a local minimum in the forward growth direction.
The minimum in the area leads to a caustic in the histogram.
VIl. SUMMARY Ideally, this would produce an asymmetric square root sin-
gularity with probability equal to zero on the left side. Be-
To conclude, growth models using conformal mappingscause of particle _size variation among branches, the singu-
have large flexibility allowing for independent control over larity is smeared into a peak. _
noise and growth anisotropy. We generalized the mfti]| Tq verify the apove assumption, we conslder th_e areas for
by using flat particles to suppress noise. It is essential thdhe first few particles grown on thig|=1 circle with the
these models lead to intrinsically isotropic growth with re-Parameteio=0.2. The area of the very first particle is close
duced noise, in contrast with other previously studied mod® 1-2« and, according to Eq(8), is independent of its
els. Also, we demostrated that favoring growth in certainPoSition. The area of the second partielg depends on its

directions can be used to simulate anisotropy of the rowtlr()OSi.tion.‘9 relative to the first particle, as shown by the solid
rate Py 9 line in Fig. 15a). Note that the area is the same as that of the

Having separate control of the noise and anisotropy, Wénst particle when the particles are far apaft; Ao, and is

have been able to analyze their effects on scaling propertieg,verall substantially larger when the particle overtap),.
We found that the fractal dimensiai= 1.7 universally for artially, this is explained by the dependeti8pof particle

. . . area on the circle radiusgssuming thag,(6#~\y) can be
any isotropic growth, regardless of the noise level. However, udely estimated by E8) with r = \,.] Another effect that

the fractal dimension is somewhat reduced in the presence bntributes to the arem, increase fori~\, is the variation

anisotropy. o , of the Jacobian as a function @, leading to additional
It was assumefil9] that particle size fluctuations, present stretching of the second particle.

in the conformal mapping model, are insignificant. We ob- e feature in Fig. 1G) that is of interest in connection
served that the growth rules used in REf9] lead to the  jth the peak in the area distributiog®(a) is the minimum
occasional appearance of exceptionally large particles. Wgf a,(¢) at =0. Translated to the histogram of areas, it
have shown that by augmenting the model with an area adeads to a caustic described by a square root singularity.
ceptance criterion this problem is fixed. However, as a possible explanation of the peak in Fig. 4 this
Clearly, more work has to be done to establish the relatioits only partially satisfying, since one has to understand why
of the models introduced with real physical processes, likesimilar caustics due to the two maxima af(¢) are not
viscous fingering or dendritic crystal growth. Another inter- observed in Fig. 4.
esting open question is how to introduce an effective surface The reason for the difference between the effects of
tension. maxima and minima can be seen from a comparison with the
cases of three and four particles. Consider the situation when
the second patrticle is centered exactly on the first particle,
ACKNOWLEDGMENTS and the third particle is grown at an angular positirela-
tive to the first two particles. The area of the third particle
We thank G. E. Falkovich, M. B. Hastings, V. A. Kaza- a,(#6) is plotted in Fig. 163) as the dashed line. Note that,
kov, V. V. Lebedev, B. Z. Spivak, and P. B. Wiegmann for since the curvature at the minimumaf( #) at #=0 is much
useful discussions. The hospitality of the Weizmann Institutesmaller than fora,(6), the corresponding caustic iR(a)
made our collaboration possible. This work was partiallywill be much stronger. On the other hand, the curvature at
supported by the Minerva Foundatio®.S.). the maxima ofaz(6) is about the same as that fap(9).
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} . ' APPENDIX B: DISCUSSION OF THE
a/a* : » NUMERICAL METHOD

Here we comment on the optimal choice of the numerical
procedure. First, since the areas of new particles are evalu-
ated before the particles are accepted, one could, instead of
eliminating large particles, change the growth algorithm so
that all particle areas become equal. This can be achieved by
adjusting the parametex, for each particle until its area
converges to a given value. Although this would somewhat
slow down the speed of computation, an obvious gain would
be in a more direct relation with the standard DLA growth.

Also, one could attempt to increase the speed and effi-
ciency of the growth algorithm by introducing in it various
improvements.

(i) Coarsening of the mappings that correspond to par-
ticles sufficiently deep in the stagnation regions. It was dem-
onstrated in Ref.19] that an accurate envelope of the cluster
can be obtained by using a truncated Laurent series for
F.(z). One can implement this observation as follows. At
the growth stepn choose some < m<n in such a way that
all particles with the numberssm are located sufficiently
deep inside the stagnation part of the cluster. Then one can
replace the mapping,,=fq°---of, by

0 L I L
/2 /4 0 /4 9 /2

FIG. 15. Area of a particle as a function of its growth point,
characterized by.

F%approx):[flo' “ofmltruncatedfm+ 12 - - fn, (B1)

where the mapping in brackets that is replaced by truncated
series is nothing bug,,. One can choosm so that the finite
‘series representation of the mappiRg(z) is accurate foz

in the active growth region. By this trick, instead of comput-
Ii'ng a composition oh functions, one has to deal with only
n—m functions at each growth step. Since at langeost of

area becomes much smaller thap, approaching zero near the particles are in the stagnation regions, one may nave
certain values of). This behavior is related to growth near —m_én. . . . -
particle corners, which are the points of divergence of the (i) Evaluating the particle area with lower precision. We
Jacobian. According to Eq7), a larger Jacobian translates US€d several hundred points on each particle’s boundary,
into a smaller particle area. The particles growing near corwhich produces areas accurate within 0.1%. In practice, such
ners form the tail of the area distributigf(a) at small areas @ high precision may not be necessary. Instead, one can pre-
a<a, . The behavior ofP(a) in this tail, P(a)xal? fol-  dict particle areas by estimating the Jacobian at several
lows from the square root divergence of the Jacobian at pafoints chosen within the bump according to some rule or
ticle corners. The slope 1/2 is clearly seen in th® s Ina  randomly.
plot in Fig. 5. (i) Using an area acceptance window to discriminate
The features ina, 34 6) discussed above evolve in an against very small particles with areasa, . These particles
interesting way for models with lower noise correspondingessentially do not change the structure of the cluster
to p>1—see Fig. 1&). The plots ofa; 3 4 #) in this figure  branches, except near the corners between adjacent particles.
are produced for the model with;=0.2 andp=3 in the = However, due to the presence of small particles additional
same way as above fgr=1. Note that relative changes of mappings appear in the composition sequehge - -of,
the area as a function af are smaller than fop=1. One  which slows down the computation.
reason for this is the weaker curvature variation for flat par- We have not used these procedures in the simulations
ticles, which makes the particle area less sensitive to thdescribed above nor have we systematically studied their ef-
growth point position. Another reason is that@t-1 the ficiency. We felt that, at the initial stage, keeping the growth
particle corners have no cusps, and thus particles with smaéllgorithm as precise and simple as possible, even at the price
areas do not appear. of somewhat slowing it down, makes the results more solid.

Both observations remain correct for any number of par
ticles. To illustrate this we plot the area(6) of the fourth
particle in the presence of three particles grown exactly o
top of each other—see the dotted line in Fig(ab

Another notable feature in the plots @& 5 ,( 6) is that the
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