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Laplacian growth with separately controlled noise and anisotropy
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Conformal mapping models are used to study the competition of noise and anisotropy in Laplacian growth.
For this purpose, a family of models is introduced with the noise level and directional anisotropy controlled
independently. Fractalization is observed in both anisotropic growth and growth with varying noise. The fractal
dimension is determined from the cluster size scaling with cluster area. For isotropic growthd51.7, at both
high and low noise. For anisotropic growth with reduced noise the dimension can be as low asd51.5 and
apparently is not universal. Also, we study the fluctuations of particle areas and observe, in agreement with
previous studies, that exceptionally large particles may appear during growth, leading to pathologically irregu-
lar clusters. This difficulty is circumvented by using an acceptance window for particle areas.
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I. INTRODUCTION

In a large class of pattern-forming systems the growth
controlled by a Laplacian field. In diffusion limited aggreg
tion ~DLA ! this field is the probability density of aggregatin
particles@1,2#. In viscous fingering it is pressure@3#, and in
crystal growth it can be either a diffusive or a thermal fie
@4#. After the DLA model was introduced by Witten an
Sander@2#, it became standard to simulate the Laplacian fi
by random walkers, which after being released at the per
ery of the system diffuse toward the growing cluster a
freeze on it. To simulate DLA, several numerical techniqu
have been developed, of which the most powerful are
off-lattice algorithms@5–7#.

Applications to other Laplacian problems have been p
posed based on the random walks idea. In particular, h
dling problems such as viscous fingering within this fram
work requires reducing the noise of individual walkers
well as modeling the surface tension. Reduction of noise
achieved by the method of multiple hits@8,9#, in which par-
ticles freeze on a particular site adjacent to the already gr
cluster only after this site has been visited more thannmin
times, wherenmin is an acceptance threshold. The method
noise reduction@8,9# was introduced in context of the on
lattice DLA models. More recently, this method was co
bined with the off-lattice technique and studied theoretica
@10–12#. In an advanced version@10# of the multiple hits
method the random walkers move off lattice and stick
rules are defined by using a finite numberm of antennas
attached to each particle, where, for instance,m54 for
square lattice DLA. Each ofm antennas has a counter th
scores the number of timesn random walkers arrive on it an
is then used to set a thresholdnmin for freezing. Having a
finite number of antennas used for each particle makes
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sticking rules in the multiple hits model anisotropic. Th
anisotropy is essential because it is significantly amplified
the growth dynamics in the low noise regime ofnmin@1.
This built-in anisotropy of growth rules has been used to t
the universality of DLA@13# and also to simulate dendriti
crystal growth@14,10#.

It has been proposed that surface tension can be mod
by introducing a probabilityt,1 of freezing upon each en
counter with the cluster@15# or by making freezing depen
dent on the local neighbor configuration@16,9,17#. In the
model@15# with t!1 each randomly walking particle freeze
only after encountering the clustert21@1 times. As a result,
the freezing point is displaced from the point of first encou
ter by the distanced.t21 in units of particle size. Effec-
tively, in this model a finite length scaled is introduced over
which the harmonic~Laplacian! measure describing th
probability of the first encounter is probabilistically ave
aged. It was conjectured in Refs.@16,9,17# ~and partially
confirmed by various features observed in the growth p
terns! that the length scaled simulates the capillary radius in
the Laplacian problem with surface tension.

The field of Laplacian growth, despite being well deve
oped by now, contains several long-standing unresol
problems. First, the lattice simulation, although extrem
efficient algorithmically, does not seem to be a natural st
ing point for analytical understanding of large scale pheno
ena, such as fingering, fractalization, and scaling. Secon
the methods of simulating Laplacian growth that have be
used so far are not entirely free of problems, the most nota
being an intrinsic anisotropy of growth rules. The origin
DLA rules @2# already use a square lattice and thus are
isotropic. This anisotropy is weak and reveals itself only
very large DLA clusters@5,7#. However, when the noise
level is reduced using multiple hits, the underlying latti
anisotropy is amplified@18,11#. The noise-reduced growth
remains vulnerable to anisotropy even when off-lattice r
dom walks are used, due to the anisotropy of the freez
rules mentioned above.
©2001 The American Physical Society02-1
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It was demonstrated recently that Laplacian growth can
studied using an entirely different approach based on iter
conformal maps@19#. The model@19# uses analytical func-
tions chosen in such a way that upon acting on a unit ci
they produce bumps of prescribed size. Iteratedn times with
the parameter defining the bump size chosen according
certain rule, these maps produce a cluster ofn particles of
nearly equal size. The conformal model of growth has
cently become the subject of active work@20–25#.

The goal of this article is to extend the conformal ma
ping methodology to problems with reduced noise a
growth anisotropy. Here one clear advantage is that
growth rules using conformal mapping@19# are intrinsically
isotropic. Because of that one can easily avoid problems p
tinent to other models, in which growth anisotropy and
duced noise are intertwined. The main idea behind the n
reduction method proposed in this work is to average
Laplacian measure over a finite length that is larger than
particle size in the original model@19#. For that we alter the
particle shape and use ‘‘flat’’ particles extended along
cluster boundary and thin in the growth direction. To co
pare our method of reducing noise to other techniques,
note that the positions of the flat particles are chosen stri
according to Laplacian measure, as in the multiple h
method @8,9#. The control over noise is achieved by su
pressing noise at length scales shorter than the partic
larger dimension. This is in contrast with the multiple h
method, where noise is suppressed due to statistical ave
ing over many particle growth attempts uniformly over
length scales down to the particle size. Because of the
pearance of this length scale our method somewhat
sembles the surface tension models used in DLA lat
growth @15,16,9,17#.

One notable difference from previous models is in t
dependence of the computation time on the achieved leve
noise reduction. Reducing statistical fluctuations in the m
tiple hits model required increasing the number of rand
walkers used to grow the cluster inversely with the no
reduction parameter. In our method one can reduce n
arbitrarily without increasing computation length, simply b
varying the particle aspect ratio with particle areas k
fixed. We also demonstrate that growth anisotropy can
naturally incorporated in the conformal mapping meth
without affecting noise reduction.

Our plan in this article is as follows. We start by revisitin
the conformal mapping model. We discuss some issues
nored before and propose a generalization to problems
reduced noise and anisotropy. In Sec. II we review
model, focusing on aspects that will be important in the r
of the article. In Sec. III we study the distribution of partic
areas produced by the growth rules employed in Ref.@19#.
We observe that these rules lead to the occasional app
ance of very large particles. To fix this problem, we evalu
particle areas at each growth step and apply an accept
criterion for newly grown particles according to their area.
Sec. IV we describe a model with reduced noise. To supp
noise we use particles that are thin in the growth direct
and smooth at the corners. In Sec. V we show how th
growth rules can be generalized for anisotropic growth.
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Sec. VI we study the scaling properties of all introduc
varieties of the model and compare them with each oth
We find that the fractal dimension estimated from clus
radius scaling is less sensitive to noise than to anisotro
For isotropic growth, both with and without noise reductio
the dimension is very close to 1.7. For anisotropic grow
reducing noise to the level at which anisotropy reveals its
strongly shifts the fractal dimension to somewhat lower v
ues. In this regime, the fractal dimension depends on s
metry, and is found to be 1.62 for fourfold symmetry and 1
for threefold symmetry. Finally, in two Appendixes we di
cuss in detail the particle area distribution and possible
provements of our numerical procedure.

II. CONFORMAL MAPPING MODEL

We describe a growing cluster by a sequence of doma
D0,D1,D2,••• corresponding to successive growth ste
in time. In the canonical formulation@2#, growth occurs due
to particles diffusing from infinity one by one and freezing
soon as they reach the cluster boundary. The particle con
tration u(r ) obeys the diffusion equation, which in the qu
sistationary approximation of slow growth is written as

¹2u~r !50 with u~r !5H 0, rP]Dn21

1

2p
lnur u, ur u→`.

~1!

The zero boundary condition on the clusterDn21 describes
freezing of thenth particle upon arrival with probability 1
The points of the cluster boundary]Dn21 where subsequen
additions are made are selected randomly with probab
given by the so-called harmonic measure

dP5u¹uu dl, dl,]Dn21 , ~2!

wheredl is a boundary element of the clusterDn21. As the
domain changes,•••→Dn→Dn11→•••, the problem~1!
has to be solved again for every new domain to determ
from Eq. ~2! the new particle position probability.

A considerable computational simplification of the pro
lem can be achieved@19# by using a sequence of analyt
functions Fn(z), n50,1,2, . . . , to represent the domain
Dn . The functionsFn are chosen so that each of them d
fines a conformal one-to-one mapping of the unit diskuzu
<1 on the domainDn , including the boundary. Adding a
new object to the cluster at thenth growth step is described
by changing the mappingFn as follows:

Fn~z!5Fn21„ f ln ,un
~z!…, F0~z!5z. ~3!

Here the functionf ln ,un
(z) maps the unit circleuzu51 onto

a unit circle with a bump centered around the pointz5eiun

of the circle. The bump size is determined by the parame
ln as discussed below. The angleun is chosen randomly a
each growth step.

The key simplification that arises in the conformal ma
ping representation~3! is due to the fact that the harmon
measure~2! is translated into a uniform probability distribu
2-2



-

-
a

g
-

la

bi

-

o
th
em
Se
s

-

-

ius
der

an-
is-
a

.

g

ter
c-

q.

h
fi-

ea.
av-

a
n-

tly
r

LAPLACIAN GROWTH WITH SEPARATELY CONTROLLED . . . PHYSICAL REVIEW E63 061102
tion for un , so thatdP(u)5du/2p. Also, there is no statis
tical correlation between subsequentu ’s.

The form of the functionf l,u(z) growing the bumps can
be chosen according to computational needs@19#. In this
article we use

f l,u~z!5eiug21~ f̃ l„g~e2 iuz!…!, ~4!

where the functiong(z)5(z21)/(z11) maps the unit disk
uzu<1 onto the left half-plane Rez<0, and the function

f̃ l~z!5hl~z!/hl~1!, hl~z!5z1Az21l2, ~5!

grows a semicircle of radiusl, as shown in Fig. 1. The
function f̃ l(z) is defined in Eq.~5! so that f̃ l(1)51. This
ensures that the mapping~4! mapsz5` onto itself.

Ideally, the valuesln defining particle size should be cho
sen so that all particle areas are equal. In the conformal m
ping model@19# this is approximately realized via predictin
the bump size to be obtained at thenth step using the Jaco
bian of the already grown cluster mappingFn21.

The argument is as follows. The area of the semicircu
bump grown usingf̃ ln

(z) is pln
2@11O(ln

2)#/8. The area of

the corresponding bump produced byFn(z), at smallln , is
approximatelyuJn21u2pln

2/2, whereJn21 is the Jacobian of
Fn21 evaluated at the position of thenth bump:

Jn215Fn218 ~z5eiun!. ~6!

Hence, to compensate for stretching due to the Jaco
Jn21, one has to choose the values ofln as follows:

ln5uJn21u21l0 , ~7!

where the parameterl0 defines particle size. For growth in
volving particles of very small size the rule~7! would have
been sufficient to ensure identical areas of all bumps. For
problem, in which the bump sizes are small but finite,
areas are only approximately equal. However, one can d
onstrate that, after certain improvements discussed in
III, the rule ~7! produces bumps with sufficiently close area

The form ~4!,~5! of the mappingf̃ has several nice fea
tures. First, since the fractional linear functiong(z) maps a

FIG. 1. The sequence of mappings constitutingf l,u(z) defined
by Eqs.~4! and ~5!.
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circle onto a circle, the mappingf l,u produces a crescent
shaped particle with circular boundary~see Fig. 1!. Second, a
simple calculation shows that the particle curvature rad
equalsl. The latter has the following consequence. Consi
growth starting from a circular cluster of radiusr, described
by the mappingF(z)5rz. The mappingF„f l,u(z)… then pro-
duces a particle of curvature radius equal tolr . After the
value of l is chosen according to the rule~7!, l5l0 /F8
5l0 /r , the particle radius becomes equal tol0, indepen-
dently of the cluster radiusr. The area of this particle is
readily evaluated:

a~l0 ,r !5a* 1l0r 2~r 22l0
2!tan21~l0 /r !,

a* 5pl0
2/2. ~8!

The areaa(l0 ,r ) varies betweena* for l0!r and 2a* for
l0@r . For a generic noncircular cluster the particle area c
not be found analytically. Statistics of the areas will be d
cussed in Sec. III. We will see that the typical area of
particle is of the order ofa* .

The overall size of the clusterDn grown according to Eqs
~3! and ~7! is well characterized@19# by the mappingFn
stretching factor at large scales:

Rn5Fn8~z→`!5)
k51

n

f lk ,uk
8 ~z→`!. ~9!

The cluster radiusRn can be conveniently evaluated usin
Eq. ~9! together with the propertyg(`)51 as follows:

Rn5)
k51

n

@ f̃ lk ,uk
8 ~z51!#215)

k51

n

~11lk
2!1/2. ~10!

The reason forRn to be an accurate measure of the clus
Dn radius lies in the properties of so-called univalent fun
tions @19,21#.

At largen the cluster radiusRn is expected to grow asna,
wherea is a numerical constant. This is consistent with E
~10! provided thatln

2n→2a at largen @19,26#. The growth
problem~1!,~2! is believed to give rise to fractal objects wit
fractal dimensiond,2. There are several conventional de
nitions of the fractal dimension of a growing cluster@1#. In
this article we employ scaling of the cluster size with its ar
Also, one can use box counting, or the relation between
erage growth velocity in a strip and the strip width.

TakingRn defined in Eq.~9! as a cluster radius provides
numerically efficient method for calculating fractal dime
sion. For that one looks for a scaling relation of the form

Rn}An
1/d , ~11!

whereAn is the total area of the clusterDn . The dimension
d is related to the parametera describing scaling ofln as
d5a21, which is true providedAn}n. In our simulation we
make sure that individual particle areas have a sufficien
narrow distribution~see Sec. III!, and thus the total cluste
area is indeed proportional to the particle number.
2-3
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M. G. STEPANOV AND L. S. LEVITOV PHYSICAL REVIEW E63 061102
Scaling properties of the growth problem described ab
have been explored by several groups@19–25#. It was con-
cluded that the properties of growth resulting from the co
formal mapping model match those of the lattice DLA mo
els. Below we revisit the relation between the proble
~1!,~2! and the conformal mapping model~3!,~4!,~7! and dis-
cuss several interesting extensions of this model.

III. AREA DISTRIBUTION

In the earlier work@19# it was assumed that the rule~7! is
sufficient to produce particles with nearly equal areas. T
assumption was apparently consistent with the cluster ima
in which each particle is represented by one or few poin
To investigate this issue more closely, in this work we ha
chosen a different method of representing particles, in wh
the exact boundary of each particle is shown. An example
a cluster with the boundaries of all individual particles d
played~see Fig. 2! demonstrates that the areas of almost
of the particles are indeed quite close. However, there
also a number of exceptional particles of large area.

Large particles tend to appear within fjords and seal
space between well developed branches. Typically, this h
pens when particle growth is attempted on the periphery
an actively growing region. Insufficiency of the rule~7! for
keeping particle areas small is caused by fluctuations of
JacobianFn8(z) over the unit circleuzu51. These fluctuations
can be large in magnitude and also very abrupt, happe
on a scale of the order ofln within the circle arc mapped
onto the particle boundary. In the case when a newly gro
particle overlaps with such a fluctuation, it can be ‘‘arti
cially stretched’’ under the mapping.

The appearance of large particles was reported in R
@21# and a method for eliminating them was proposed, ba
on choosing an optimal shape of particles produced by
mappingf l,u(z). It was argued@21# that the best value of the
parameter 0,a,1 in the mapping defined in Ref.@19# is
given bya52/3. This value provides a compromise betwe
abundance of large particles ata→0 and a needlelike par
ticle shape ata→1. Since in this article the particle shap

FIG. 2. Cluster ofN5400 particles grown using the mode
~3!,~7! with l050.2 andf l,u of the form ~4!,~5!. The boundary of
each particle is displayed. Note large particles which appear ra
and seal fjords.
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will be used to tune noise, we employ a different method
eliminating large particles, as described below.

To study the role of exceptional particles, we calculate
particle areas generated by the growth model~3!,~7!. The
method employed to evaluate particle areas is the followi
For the particle grown at stepn, we start with few points on
the unit circleuzu51 which are mapped byFn on the particle
boundary. Subsequently, we add new points on the ci
uzu51 between the old points, and compute distances
tween images of neighboring points underall mappings

f n , f n21+ f n , . . . , Fn5 f 1+ f 2+•••+ f n , ~12!

where f k is a shorthand notation forf lk ,uk
and + stands for

the mapping composition. We keep adding new points u
the distances between the images of all neighbors will
exceedgl0, whereg!1 is a numerical factor. We used th
above procedure withg50.05, which produces about 200
400 points per particle.

This method enables one to have an accurate graph
representation of each particle, as demonstrated in Fig
and also to evaluate particle areas with an accuracy on
level of 0.1%. This is illustrated in Fig. 3~a! showing how
the cluster total areaAn is changing during the growth of th
cluster displayed in Fig. 2. The areaAn grows as a function
of n in small steps of ordera* 5pl0

2/2, alternating with
occasional jumps of a much larger magnitude. The jum
correspond to the appearance of large particles which
inner cluster regions. The decomposition of the growth ofAn
into the smooth and singular parts is revealed more clearl
Fig. 3~b! showing the dependence ofAn versusn for the
same growth as in Fig. 3~a!, with a linear function 2.1a* n
subtracted.

A histogram of the individual particle areasan5An
2An21 is plotted in Fig. 4~a!. The area distribution was
obtained by averaging over 10 realizations of the first 10
growth steps with the parameterl050.2 ~the same as in
Figs. 2 and 3!. The area distributionP(an) is sharply peaked

ly

FIG. 3. ~a! Solid line: total cluster areaAn dynamics for the
growth of the cluster in Fig. 2,N5400, l050.2. Dotted line: the
areaAn versusn for growth in which only particles with area insid
the window@0,3a* # are accepted, other growth parameters are
same.~b! The same area dynamics as in~a! with a linear function
subtracted:An22.1a* n versusn.
2-4
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LAPLACIAN GROWTH WITH SEPARATELY CONTROLLED . . . PHYSICAL REVIEW E63 061102
about 2.1a* and has a number of other interesting propert
that will be discussed in Appendix A.

The feature of the distributionP(an) displayed in Fig.
4~a! that corresponds to the exceptionally large particles
the tail stretching far to the right from the main peak. No
that only the beginning of the tail is displayed in Fig. 4~a!
because the weight of the tail in the probability distributi
is insignificant, and so the values ofP(an) far in the tail are
too small to be visible on the scale of the peak.

To display the tail we replot the distributionP(a) on a
log-log scale, as shown in Fig. 5. The right tail ofP(a) is
powerlike, P(a)}a2m with m'2.5. Sincem.2, the first
moment̂ a&5*aP(a)da is finite ~and thuŝ a&.a* ). How-
ever, sincem,3, the second moment ofP(a) is divergent.
The existence of the mean particle area^a& means that
^An&}n. However, the absence of variance implies that

FIG. 4. ~a! Probability distribution function of particle area
normalized bya* 5pl0

2/2'0.063 @see Eq.~8!#. Statistics were
taken over 10 independent runs of the growth withN51000, l0

50.2. Note the peak at;2.1a* and the tail corresponding to ex
ceptionally large particles. The largest area observed was'87.8a*
~see Fig. 2!. Small peak marked by arrow is due to the prima
particles growing directly on the unit circle.~b! Same as in~a! for
growth in which only particles with areas in the window@0,3a* #
are accepted.

FIG. 5. Logarithm of the probability distribution function o
particle area lnP(a/a* ). Calculated from 83 realizations withN
52000, l050.8.
06110
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fluctuations ofAn about the mean value are non-Gauss
and larger than required by the central limit theorem. Bo
features are clear in the sampleAn dependence in Fig. 3.

Let us remark that the tail in Fig. 5 at its far end is app
ently somewhat steeper thana2m. We believe that this de-
viation from thea2m behavior is due to the finite numbe
N52000 of time steps in the growth samples used to ob
P(a). In a finite cluster there is an upper cutoff on possib
particle areas. This makes the far tail ofP(a) nonstationary,
shifting the cutoff to larger areas asN increases.

Clearly, one would like to inhibit the appearance of lar
particles with areas in the tail ofP(a). This is desirable
because, even though the tail is quite thin and large parti
are rare, extremely large particles appearing occasion
may affect macroscopic characteristics of the growth. In p
ticular, the relatively slow power law decrease in the ta
P(a)}a2m, may affect the scaling of the cluster sizeRn
and/or the numerical accuracy of the scaling exponent.
eliminate the growth of large particles, we choose an acc
tance thresholdamax53a* to truncate the tail of the distri-
bution in Fig. 4~a!. Then, for each growth step, we calcula
the new particle areaan . The particle is accepted only i
an<amax, otherwise the particle is discarded and a new
tempt at particle growth is made. An example of the clus
grown according to these rules is displayed in Fig. 6.

One can see immediately that the overall structure of
branches in Fig. 6 is much more regular than that in Fig
The distribution of areas for such a growth is shown in F
4~b!. Within the acceptance window@0,amax# the distribution
P(a) repeats in all details the distribution shown in Fig. 4~a!
for the growth with all particle areas accepted.

For growth with large particles eliminated, the areaAn
increases as a linear function of the step number. The a
age increment ofAn is given by the mean value ofan taken
from the distribution shown in Fig. 4~b!. To verify this, we
plot An versusn in Fig. 3 for the same growth parameters
those used in Fig. 2, where only the areas up to 3a* are
accepted. Note a small difference between the slope of
dependence atn<50 and at largern that appears because o
relatively smaller size of the primary particles growing d
rectly on the unit circle.

The growth model augmented with the area accepta
criterion has a new parameteramax/a . In principle, choos-

FIG. 6. Cluster grown with the particle area acceptance wind
@0,3a* # @see Fig. 4~b!#, N517 545,l050.8.
*

2-5
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M. G. STEPANOV AND L. S. LEVITOV PHYSICAL REVIEW E63 061102
ing different values ofamax gives rise to different growth
patterns. However, as long as the window@0,amax# contains
much of theP(a) peak area, we do not observe any quali
tive change in the growth.

Scaling properties of the growth can be studied in sev
ways. Previous studies of scaling@19,21–24# are based on
the relationRn}na, whereRn was obtained for the growth
with unrestricted areas. However, it would be more in
spirit of the notion of a fractal to use the relation~11! be-
tween cluster size and its area. This clearly would not w
well with large particles present, because statistical fluct
tions of the cluster areaAn are quite large in this case. On th
other hand, for the growth with restricted areas used in
work, the fluctuations ofAn are reduced to a level consiste
with the central limit theorem, and thus one can employ
relation ~11! to study scaling.

Of course, it is not cleara priori whether growth with
area cutoff is equivalent macroscopically to growth with u
restricted areas. On general grounds, one may expec
growth to be significantly altered by eliminating large pa
ticles. Whether this is true can be indirectly tested by co
paring theRn vs n dependence for growth with unrestricte
areas with the fractal dimension obtained from the relat
~11! for growth with area cutoff. We note in that regard th
the scaling exponentd51.7 found below ~see Sec. VI!
matches exactly the value found in Ref.@19#. However, al-
though the presence or absence of large particles seems
irrelevant for the cluster size scaling, other growth charac
istics, such as the structure of branches and fjords, are li
to be more sensitive to the method of treating large partic

We postpone discussion of various details and feature
the area distributionP(a) to Appendix A. In the remaining
part of the article we use the conformal mapping model a
mented with the area acceptance criterion to study sev
interesting Laplacian growth problems.

IV. NOISE-REDUCED LAPLACIAN GROWTH

Roughness of the growing cluster is mainly due to t
factors: shot noise and the Mullins-Sekerka instability@27#.
The shot noise results from the randomness of the aggre
ing particles’ positions, and so it contributes to the fluctu
tions equally on all spatial scales down to the particle s
The Mullins-Sekerka instability is due to aggregation ra
enhancement near the tips, which leads to increme
growth of perturbations of a smooth front. The wave-num
dependence of the growth rate for a harmonic modulation
an interface moving with average velocityv is given bygk
5vuku. The lineark dependence ofgk implies that the insta-
bility develops first on the smallest scale, in our proble
given by the particle size.

To study the ultraviolet cutoff role, i.e., the effect of sho
distances on the noise and the instability, it is of interes
introduce a parameter in the problem that allows one to s
the value of the cutoff scale to values larger than the part
size. One expects that upon doing so both the noise and
instability growth rate will be reduced.

In the mapping model, the noise level can be control
by altering the shape of aggregating particles. Below
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show how by changing the functionf̃ l(z), defined by Eq.
~5!, one can create ‘‘flat’’ particles that are wide along t
interface and thin in the growth direction. The reason t
noise is suppressed on using flat particles is the following
this growth, a particular displacement of the growing clus
boundary amounts to a larger number of layers than in
case of rounded particles used in Ref.@19#. Then, due to
statistical averaging over many particle layers the bound
displacement becomes less erratic, and so the noise is
duced. Quantitatively, the noise suppression factor can
estimated as the square root of the particle aspect ratio.

Flat particles can be produced by modifyingf̃ l(z) as fol-
lows:

f̃ l,p~z!5Whlp

21S 1

p
hlp

„hl~z!…D , lp5
2l

p11/p
, ~13!

W5Fhlp

21S 1

p
hlp

„hl~1!…D G21

, p>1. ~14!

The functionhl(z) is defined in Eq.~5!, and its inverse has
the formhl

21(z)5 1
2 (z2l2/z). The factorW is introduced in

order to havef̃ l,p(1)51, as for the functionf̃ l(z) defined
by Eq. ~5! above. The resulting function~4! satisfies
f l,u(`)5`, which ensures the propertyFn(`)5` for all n.

The mapping produced by the function~13! is illustrated
in Fig. 7. Note that, because ofhlp

( il)/p5 ilp , the square

root singularities inf̃ l,p at z56 il are absent for allp.1.
Instead, the mapping composition~13! produces weaker sin
gularities of the form (z6 il)3/2. This smooths the corners o
the particles, as shown in Fig. 7.

Qualitatively, under variation ofp the particle shape
evolves as follows. Atp51 the mappingf̃ l,p form ~13!
coincides with Eq.~5!. Increasingp produces particles with
growing aspect ratio, as can be seen from comparing
enlarged parts of Figs. 10, 11, and 8 below.

To illustrate the effect ofp on the particle shape, conside
the mapping function~13! in the limit p@1. First, one can
rewrite Eq.~13! as

FIG. 7. The sequence of mappings constitutingf̃ l,p(z) as de-
fined by Eq.~13!; p51.5.
2-6
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LAPLACIAN GROWTH WITH SEPARATELY CONTROLLED . . . PHYSICAL REVIEW E63 061102
f̃ l,p~z!5W8S hl~z!2
lp

2~p221!

2hlp
~hl~z!!D , ~15!

whereW8 is a prefactor chosen so thatf̃ l,p(1)51. Expand-
ing Eq. ~15! to lowest order in 1/p, one obtains

f̃ l,p~z!5z1
l2

p2 S z12Az21l2

~z1Az21l2!2
2CzD , ~16!

whereC5@2hl(1)21#/hl
2(1) andhl is defined in Eq.~5!.

The boundary of the particle produced byf̃ l,p(z) of the form
~16!, to lowest order in 1/p, is

x5
2

l2p2
~l22y2!3/2, ~17!

where x1 iy5z. The area of this particle is 3pl2/4p2.
Mapped byg21, according to Eq.~4!, the area is multiplied
by a factor equal to 4 atl!1.

One can use the growth mapping model~3!,~7! with the
function ~13! to grow clusters in much the same way as w
done for the model withp51 in Sec. III. The first step is to
study the particle area distribution for growth with unr
stricted areas. The distribution looks similar to that in Fig.
containing a central peak and tails corresponding to v
large and very small particles. In this case the peak is so
what wider than for thep51 case. However, much of it
weight in the distributionP(a) is still contained in the win-
dow @0,3a* #. Here the ‘‘standard area’’a* is defined, by
analogy with Eq.~8!, as the area of a particle grown over
perfectly flat interface.@For pÞ1 there is no closed form
expression for the particle area, like Eq.~8!, and so one has
to calculatea* numerically.#

As before, at each growth step we chooseun randomly,
0<un,2p, and calculate the parameterln using Eq.~7!,
i.e., based on the particle area predicted from the Jaco
Jn21. Then we evaluate the actual areaan of the particle. To
inhibit the appearance of large particles, we use the ac
tance window@0,3a* #. If an.3a* , the particle is not ac-
cepted and a new growth attempt is made.

An example of growth withp53 and l050.2 is dis-
played in Fig. 8. In the inset we zoom in on the details of o
finger. Note that individual particles are indeed quite flat a
are evenly spread over the cluster boundary, indicating
duced noise. The growing interface is overall very smoo
without sharp tips or corners. Also, the fingers are mu
thicker than for thep51 growth ~see Fig. 6!.

The cluster sizeRn is defined by Eq.~9!. As in Sec. III,
the terms in the product~9! can be evaluated using the rel
tion f lp ,u8 (`)51/f̃ l,p8 (1), where

f̃ l,p8 ~1!5
hl~1!/A11l2

Ahl
2~1!1lp

2

hlp

2
„hl~1!…1p2lp

2

hlp

2
„hl~1!…2p2lp

2
. ~18!

In the following Sec. VI we use Eq.~18! along with Eq.~9!
to evaluate the cluster radiusRn and study its scaling.
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The appearance of the cluster in Fig. 8 shows that us
flat particles indeed helps to reduce statistical fluctuations
this model, effective averaging of the harmonic measure
due to the presence of a tangential-to-boundary length s
set by the particles’ larger dimension. This length scale
controlled by the parameterp and becomes large atp@1, if
measured in units of the particle sizeAa* . Noise reduction
takes place due to the absence of fluctuations with wa
length smaller than the particles’ larger dimension, result
in a shift of the shot noise spectrum cutoff wave numb
from 2p/Aa* to lower values as the parameterp is in-
creased. Because of reduced noise, as compared to tp
51 case, more aggregation events of flat particles are nee
to reach a given radius of the cluster.

Averaging over a tangential length scale is somew
similar to that used in the on-lattice DLA models to simula
surface tension@15,16,9,17#. In these works freezing of ran
dom walkers upon each encounter with the cluster was
scribed by a finite probabilityt,1 which could be a function
of occupancy of the sites around the freezing point. Sin
freezing of each particle typically takes place after aboutt21

encounters with the cluster, att!1 these models are chara
terized by a large length scale over which the Laplacian m
sure is probabilistically averaged. Similarly, the flat partic
used in our model can be thought of as the result of ave
ing over possible particle positions within a finite leng
scale taken over the harmonic measure. Moreover, there
slight dependence of particle size on growth position:
particles appearing near the tips are somewhat smaller
those appearing in the concave regions~see Fig. 8!. This
correlation is consistent with the surface tension interpre
tion.

The crucial difference, however, is that particle positio
in our model are chosen according to the unaltered harm
measure, whereas in the surface tension models par
freezing depends on local boundary geometry. From t
point of view our model is more similar to the multiple hi
models@8,9# in which statistical averaging of the harmon
measure over particle growth attempts is used to con
noise. In these models noise reduction is achieved by a
aging over independent random walkers with a threshold
the minimal number of visits of each site required befo
freezing at this site. Since independent walkers arrive at v

FIG. 8. Cluster grown withp53, l050.2. The number of
growth stepsN515 043.
2-7
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M. G. STEPANOV AND L. S. LEVITOV PHYSICAL REVIEW E63 061102
distant points of the cluster boundary, this averaging is
characterized by an additional large length scale and
bears no resemblance to surface tension.

The models using finite freezing probabilityt,1 have
been shown to give rise to clusters with thick branches. T
Laplacian character of the dynamics and the analogy of
averaging length scale with the capillary radius has b
pointed out @15# and a relation with the Saffman-Taylo
problem with surface tension has been conjectured@17#. Be-
cause of the large length scale appearing in our avera
scheme, here a similar relation to the problems with surf
tension can be conjectured. Indeed, the growth displaye
Fig. 8 looks like a typical fingering pattern observed in t
Saffman-Taylor problem with surface tension. As a word
caution, one should realize that all available evidence for
equivalence between the problem with surface tension
our largep growth, however similar they appear to be,
rather indirect. The issue of whether or not this grow
model is indeed characterized by an effective surface ten
and how the latter compares to the noise will be discus
elsewhere.

V. ANISOTROPIC GROWTH MODEL

The iterated mapping model~3!,~7! can be generalized to
describe spatial anisotropy of the local growth rate. Su
anisotropy is characteristic of crystal growth, in which
particles arriving at the crystal-liquid interface have to a
commodate to the anisotropic crystal structure@4#.

Anisotropic growth often gives rise to anisotropic irreg
lar fingering patterns called dendrites@16,14,18,10#. The dy-
namics of dendrite growth obeys scaling laws similar to t
of isotropic Laplacian growth@7,28#. One of the outstanding
theoretical questions is how the scaling exponents depen
the anisotropy.

In this problem, the cluster grows due to spatially isot
pic diffusion and aggregation of particles. Thus the quasi
tionary probability distribution still obeys Eq.~1!. The dif-
ference from the isotropic model is that the cluster cha
due to particle freezing at the boundary depends on the l
growth directionv, uvu51. ~The unit vectorv is normal to
the boundary.! Accordingly, the probability of joining the
cluster becomes a function ofv, and Eq.~2! is replaced by

dP5V~v! u¹uu dl, dl,Dn21 , ~19!

where the functionV(v) describes anisotropy.
In order to include anisotropy in the mapping mod

~3!,~7!, at thenth growth step one has to be able to pred
the local growth directionvn from particle positions de-
scribed by randomly chosen anglesuk , k51,2, . . . ,n21.
This is possible because the complex-valued Jacobian
conformal mapping keeps track of the angle change un
the mapping. Specifically, considerQn5un1argJn21,
whereJn21 is given by Eq.~6!. ThenQn defines a normal to
the cluster boundary,vn5cosQn x̂1sinQnŷ, at the growth
point Fn21(eiun).

Now, there are several possible ways to account for
growth anisotropy. For instance, one can introduce the
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isotropy by making ln a function of Qn , e.g., ln

}V1/2(vn). Another way is to introduce an acceptance pro
ability for the particles that depends onQn in some way. In
the simulations reported below we use an acceptance
dow for MQn with M53,4, . . . , corresponding to growth
with M-fold symmetry. Only particles withQn such that

2umax<MQn<umax ~20!

are accepted. Hereumax is a parameter in the interval@0,p#
controlling the degree of anisotropy. Small values ofumax
!p correspond to highly anisotropic growth, whereas fu
isotropic growth is recovered in the limitumax→p.

Other aspects of the simulation are the same as in Sec
We employed the elementary mappingf̃ l,p(z) of the form
~13! with the noise level controlled by the parameterp>1.
Particles with large areas were eliminated using the acc
tance window@0,3a* # defined in Sec. IV. An example o
growth with threefold symmetry (M53) is shown in Fig. 9.
In this case, we usedl050.8, p51.5, and umax
5cos21(0.9)'0.451. The cluster is characterized by over
symmetric main branches covered with numerous si
branches.

In our model one has separate control over the degre
anisotropy and over noise, via the parametersumax and p.
This is convenient for studying the effects of noise on t
ordering of branches in dendrites. To illustrate that, we co
pare two growths with fourfold symmetry, displayed in Fig
10 and 11. The cluster in Fig. 10 is obtained using thep
51 model without noise reduction, as described in Secs
and III. The cluster in Fig. 11 is grown using the noise r
duced model of Sec. IV with the parameterp52. In both
cases, we use the same anisotropy parameter:umax
5cos21(0.95)'0.318. One notes high anisotropy of th
growth present at small scales in both cases, which is sig
cantly suppressed at larger scales for the noisy growth w
p51 ~see Fig. 10!. However, thep52 growth with low
noise remains very anisotropic at all scales~see Fig. 11!.

It is known from studies of on-lattice DLA models tha
noise, no matter how strong, gives way to anisotropy at s
ficiently large scales@5,6,18,11#. We thus expect that a simi

FIG. 9. Anisotropic growth withM53 obtained using the win-
dow ~20! for the growth direction with cosu max50.9. Other param-
eters used:N510 146,l050.8, p51.5.
2-8
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LAPLACIAN GROWTH WITH SEPARATELY CONTROLLED . . . PHYSICAL REVIEW E63 061102
lar effect may take place in the noisy growth withp51,
making the growth shown in Fig. 10 at larger scales look l
that in Fig. 11.

In agreement with the studies of off-lattice DLA mode
@14#, we observed that dendritic growth with the symme
of order M53,4 is much more stable with respect to noi
than that withM55,6 or higher. The scaling properties
anisotropic growth will be studied in Sec. VI.

VI. SCALING PROPERTIES

Scaling ofRn for all growth models introduced above
studied here using the following procedure. The cluster
dius Rn obtained from Eqs.~9!, ~10!, and ~18! is plotted
against the cluster areaAn , evaluated as the sum of ind
vidual particle areasan . Asymptotically, at largen, one has
Rn}An

1/d . To determined more accurately we optimize ini
tial conditions of the growth, represented in our model by
nondimensionalized particle sizel0, as described below.

In the log-log plot ofRn versusAn one can clearly distin-
guish two regimes, initial growth and developed orregular
growth, characterized by somewhat different slopes of
corresponding parts of the lnR vs lnA curves. The geometri
cal meaning of these regimes is as follows. For isotro

FIG. 10. Anisotropic growth withM54, cosumax50.95, and
high noise:p51, N57635, l050.3.

FIG. 11. Anisotropic growth withM54, cosumax50.95, and
low noise:p52, N56782, l050.8.
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growth, with or without noise suppression, the cluster i
tially consists of branches growing essentially independen
Later, at the regular growth stage, the number of m
branches is reduced to four or five, all interacting and co
peting with each other. For anisotropic growth withM-fold
symmetry the number of main branches isM at all stages of
growth. Regular growth in this case is distinguished by ma
fingers appearing on the sides ofM main branches.

The initial stage is more pronounced when the parti
size, determined by the value ofl0, is much smaller than the
unit circle from which the growth starts. Since we are inte
ested in regular growth scaling, in each case studied we t
to optimize the value ofl0 to shorten the initial growth
stage, carefully checking that the variation ofl0 has no de-
tectable effect on the asymptotic slope of the lnR vs lnA
curve. The benefit of shortening the initial growth stage
that, at a constant number of particles, it leads to lon
regular growth and thus allows one to extract the scal
exponent with higher precision. The resulting curves are p
sented in Fig. 12, as described in the figure caption and
low.

The optimal value ofl0 determined for the isotropic
growth with p51 is close tol050.8. For the scaling analy

FIG. 12. Log-log plots ofRb/^a& ~a! andR/Ag ~b! vs normal-
ized areaA/^a& for several clusters described in the text. Hereb
51.7, g51/1.751/b, and^a& is the particle area averaged over th
cluster. The plots~a! and ~b! are connected by an affine transfo
mation.
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M. G. STEPANOV AND L. S. LEVITOV PHYSICAL REVIEW E63 061102
sis we used the growth displayed in Fig. 6, in whichN
517 545, l050.8, andp51. In Fig. 12, it corresponds to
the lowest of the curves, marked bya1. To eliminate the
effect of fluctuations at the initial stage of the growth, w
also generated the curvesa2 , a3, anda4, by averaging lnR
over 5, 10, and 50 growth realizations withN55000, 1000,
and 200 time steps, respectively.

For isotropic growth with reduced noise we analyzed t
growths with p53: curve b1 with N511 611, l050.1;
curve b2 with N515 043, l050.2. The curveb2 corre-
sponds to the growth displayed in Fig. 8. At low noise, t
fluctuations ofRn are quite small, which makes addition
averaging over realizations unnecessary.

Note that for the isotropic growth models the strategy
optimizing l0 works quite well, allowing one to almost en
tirely eliminate the initial growth region. The scaling dime
sion found from the slope of the best straight line fits is clo
to 1.7. To study the deviation from 1.7, we subtract from
curves the linear function lnR5ln A/1.7 and plot the result in
the lower part of Fig. 12. Note that upon this subtraction
curves for isotropic growth, with or without noise suppre
sion, become nearly perfectly horizontal. Estimate of the
viation from the best horizontal line fit shows that the val
1.7 is accurate within 1%.

For anisotropic models, we consider three differe
growths: curvec1 with N510 146,l050.8, p51.5, M53;
curve c2 with N57635, l050.3, p51, M54; curve c3
with N56782, l050.8, p52, M54. These curves corre
spond to the growths displayed in Figs. 9, 10, and 11, res
tively. As above, we subtract the linear function lnR
5ln A/1.7. However, after this subtraction, the curvesc1 and
c3 retain some residual slope. Estimating it, we conclude
the best value for the fractal dimension isd'1.5 for curvec1
and d'1.62 for curvec3. The latter value agrees with th
valuesd'1.58 andd'1.63 for growth withM54 reported
in Refs.@28,7#.

For the curvec2 corresponding to anisotropic growth wit
noise, after subtracting lnR5ln A/1.7, we do not find any
significant residual slope. It is possible, however, that
dimension 1.7 corresponds to the crossover regime
changes to a lower value at largerN. Similar behavior is
known to take place in on-lattice DLA growth@7#, where the
dimension 1.7 observed for not very large clusters cros
over to 1.63 atN;43106.

To understand possible sources of errors in determin
the fractal dimension from lnR vs lnA curves, here we con
sider howRn and An fluctuate withn. The fluctuations of
ln Rn gradually decrease with increasingn, as can be clearly
seen in Fig. 12~b!. A convenient way to analyze fluctuation
is to plot pairs (lnRN ,ln AN) for particular N, repeating
growth many times. In Fig. 13 we present results for 13

growth samples and several values ofN. The resulting clouds
become more compact asN increases, indicating that th
fluctuations of lnRN and lnAN are decreasing.

Let us first discuss fluctuations of lnAn . The total areaAn
is the sum of individual particle areasak , k51,2, . . . ,n.
Assuming that the areasak are independent or, more pre
cisely, have only short correlations, one obtains a Gaus
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distribution with the variance}n. ~As we argue below, there
exist long negative correlations of particle areas, which m
further reduce fluctuations ofAn .) The fluctuations of lnAn
are simply given by relative fluctuationsdAn /An , which
means that for largen the distribution of lnAn is also Gauss-
ian, with the variance proportional ton21.

On the other hand, the radiusRn is a product ~9! of
stretching factorsJk

(`)5 f k8(z→`). SinceJk
(`).1 for all k,

the quantityRn grows monotonically, so thatRn}An
1/d at

large n. Thus the noise due to fluctuations ofJk
(`) is of a

multiplicative nature. One can write

ln Rn5 (
k51

n

ln f k8~z→`!, ~21!

which suggests that the distribution of lnRn is Gaussian, i.e.,
the distribution ofRn is log-normal. Indeed, the log-norma
fit perfectly describes the statistics ofRn , as demonstrated in
Fig. 14. However, attempting a Gaussian fit produces
asymmetric distribution deviating from the observed dis
bution of lnRn . Thus, even though the relative fluctuations
Rn are small, the statistics is best described as log-norm

FIG. 13. Clouds of points (lnR,ln A) corresponding to 1000 re
alizations forN525, 50, 100, and 200,l050.8, p51.

FIG. 14. Probability distribution of lnR for N5100 and N
5200 calculated from 10 368 and 2862 growth realizations, resp
tively; l050.8, p51.
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LAPLACIAN GROWTH WITH SEPARATELY CONTROLLED . . . PHYSICAL REVIEW E63 061102
Naively, Eq.~21! implies growth of the variance of lnRn

with increasingn. However, Figs. 13 and 14 demonstra
that, on the contrary, the width of the lnRn distribution is
decreasing with increasingn. This nontrivial behavior was
first mentioned, without explanation, in Ref.@21#.

To rationalize the observed sharpening of the distribut
of Rn , one can argue as follows. We note that the dynam
of Rn is characterized by a negative feedback. Consi
growth of a cluster that at thenth step has a radius smalle
than average. Then the Jacobian ofFn is typically smaller
than its mean value at this number of particles. In this ca
according to Eq.~7!, subsequently growing particles wi
have largerlk’s, and thus larger areas, until the cluster
dius approaches the average value. The evolution of a clu
that at a certain step has a radius larger than average ca
considered in a similar way. This long time anticorrelation
lk’s suppresses the fluctuations ofRn . It also produces long
negative correlations of particle areas.

VII. SUMMARY

To conclude, growth models using conformal mappin
have large flexibility allowing for independent control ov
noise and growth anisotropy. We generalized the model@19#
by using flat particles to suppress noise. It is essential
these models lead to intrinsically isotropic growth with r
duced noise, in contrast with other previously studied m
els. Also, we demostrated that favoring growth in cert
directions can be used to simulate anisotropy of the gro
rate.

Having separate control of the noise and anisotropy,
have been able to analyze their effects on scaling proper
We found that the fractal dimensiond51.7 universally for
any isotropic growth, regardless of the noise level. Howev
the fractal dimension is somewhat reduced in the presenc
anisotropy.

It was assumed@19# that particle size fluctuations, prese
in the conformal mapping model, are insignificant. We o
served that the growth rules used in Ref.@19# lead to the
occasional appearance of exceptionally large particles.
have shown that by augmenting the model with an area
ceptance criterion this problem is fixed.

Clearly, more work has to be done to establish the rela
of the models introduced with real physical processes,
viscous fingering or dendritic crystal growth. Another inte
esting open question is how to introduce an effective surf
tension.
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APPENDIX A: DETAILS OF THE PARTICLE
AREA DISTRIBUTION

Here we discuss in more detail the distribution of partic
areas. The main feature manifest in the area histogram p
ted in Fig. 4 is a sharp asymmetric peak at'2.1a* . This
peak has its origin in the dependence of particle size on
growth point.

The argument is as follows. First we note that the grow
is taking place predominantly at the tips of the branch
Because of that, for several particles growing on each ot
there is a tendency to preserve growth direction. This le
to formation of relatively long chains of particles growing
a particular direction, clearly seen in the inset of Fig. 6. T
chains are mostly formed at the tips of outer branches.

Now, consider a particle growing near one of the tips. T
area of this particle has some dependence on the positio
the growth point relative to the tip. The peak in the hist
gram in Fig. 4 is explained if one assumes that the part
area has a local minimum in the forward growth directio
The minimum in the area leads to a caustic in the histogr
Ideally, this would produce an asymmetric square root s
gularity with probability equal to zero on the left side. B
cause of particle size variation among branches, the sin
larity is smeared into a peak.

To verify the above assumption, we consider the areas
the first few particles grown on theuzu51 circle with the
parameterl050.2. The area of the very first particle is clos
to 1.2a* and, according to Eq.~8!, is independent of its
position. The area of the second particlea2 depends on its
positionu relative to the first particle, as shown by the so
line in Fig. 15~a!. Note that the area is the same as that of
first particle when the particles are far apart,u@l0, and is
overall substantially larger when the particle overlapu;l0.
Partially, this is explained by the dependence~8! of particle
area on the circle radius@assuming thata2(u;l0) can be
crudely estimated by Eq.~8! with r 5l0.# Another effect that
contributes to the areaa2 increase foru;l0 is the variation
of the Jacobian as a function ofu, leading to additional
stretching of the second particle.

The feature in Fig. 15~a! that is of interest in connection
with the peak in the area distributionP(a) is the minimum
of a2(u) at u50. Translated to the histogram of areas,
leads to a caustic described by a square root singula
However, as a possible explanation of the peak in Fig. 4
is only partially satisfying, since one has to understand w
similar caustics due to the two maxima ofa2(u) are not
observed in Fig. 4.

The reason for the difference between the effects
maxima and minima can be seen from a comparison with
cases of three and four particles. Consider the situation w
the second particle is centered exactly on the first parti
and the third particle is grown at an angular positionu rela-
tive to the first two particles. The area of the third partic
a3(u) is plotted in Fig. 15~a! as the dashed line. Note tha
since the curvature at the minimum ofa3(u) at u50 is much
smaller than fora2(u), the corresponding caustic inP(a)
will be much stronger. On the other hand, the curvature
the maxima ofa3(u) is about the same as that fora2(u).
2-11
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Both observations remain correct for any number of p
ticles. To illustrate this we plot the areaa4(u) of the fourth
particle in the presence of three particles grown exactly
top of each other—see the dotted line in Fig. 15~a!.

Another notable feature in the plots ofa2,3,4(u) is that the
area becomes much smaller thana* , approaching zero nea
certain values ofu. This behavior is related to growth nea
particle corners, which are the points of divergence of
Jacobian. According to Eq.~7!, a larger Jacobian translate
into a smaller particle area. The particles growing near c
ners form the tail of the area distributionP(a) at small areas
a!a* . The behavior ofP(a) in this tail, P(a)}a1/2, fol-
lows from the square root divergence of the Jacobian at
ticle corners. The slope 1/2 is clearly seen in the lnP vs lna
plot in Fig. 5.

The features ina2,3,4(u) discussed above evolve in a
interesting way for models with lower noise correspond
to p.1—see Fig. 15~b!. The plots ofa2,3,4(u) in this figure
are produced for the model withl050.2 andp53 in the
same way as above forp51. Note that relative changes o
the area as a function ofu are smaller than forp51. One
reason for this is the weaker curvature variation for flat p
ticles, which makes the particle area less sensitive to
growth point position. Another reason is that atp.1 the
particle corners have no cusps, and thus particles with s
areas do not appear.

FIG. 15. Area of a particle as a function of its growth poin
characterized byu.
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APPENDIX B: DISCUSSION OF THE
NUMERICAL METHOD

Here we comment on the optimal choice of the numeri
procedure. First, since the areas of new particles are ev
ated before the particles are accepted, one could, instea
eliminating large particles, change the growth algorithm
that all particle areas become equal. This can be achieve
adjusting the parameterln for each particle until its area
converges to a given value. Although this would somew
slow down the speed of computation, an obvious gain wo
be in a more direct relation with the standard DLA growt

Also, one could attempt to increase the speed and e
ciency of the growth algorithm by introducing in it variou
improvements.

~i! Coarsening of the mappings that correspond to p
ticles sufficiently deep in the stagnation regions. It was de
onstrated in Ref.@19# that an accurate envelope of the clus
can be obtained by using a truncated Laurent series
Fn(z). One can implement this observation as follows.
the growth stepn choose some 1,m,n in such a way that
all particles with the numbers<m are located sufficiently
deep inside the stagnation part of the cluster. Then one
replace the mappingFn5 f 1+•••+ f n by

Fn
(approx)5@ f 1+•••+ f m# truncated+ f m11+•••+ f n, ~B1!

where the mapping in brackets that is replaced by trunca
series is nothing butFm . One can choosem so that the finite
series representation of the mappingFm(z) is accurate forz
in the active growth region. By this trick, instead of compu
ing a composition ofn functions, one has to deal with onl
n2m functions at each growth step. Since at largen most of
the particles are in the stagnation regions, one may havn
2m!n.

~ii ! Evaluating the particle area with lower precision. W
used several hundred points on each particle’s bound
which produces areas accurate within 0.1%. In practice, s
a high precision may not be necessary. Instead, one can
dict particle areas by estimating the Jacobian at sev
points chosen within the bump according to some rule
randomly.

~iii ! Using an area acceptance window to discrimin
against very small particles with areas!a* . These particles
essentially do not change the structure of the clus
branches, except near the corners between adjacent part
However, due to the presence of small particles additio
mappings appear in the composition sequencef n+•••+ f 1,
which slows down the computation.

We have not used these procedures in the simulat
described above nor have we systematically studied their
ficiency. We felt that, at the initial stage, keeping the grow
algorithm as precise and simple as possible, even at the p
of somewhat slowing it down, makes the results more so
2-12
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